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2.3 Groups of Symmetries

One really natural place to find groups is when looking at the symmetries of an object. As T alluded to
back in Section 2.1, symmetries of a geometric object correspond to a special subset of the set of bijections
on that object. We'll see exactly what extra conditions need to be satisfied shortly, but first we should tie
the mathematical notion of symmetry to the one you are already quite familiar with in the natural world.
Our brains are quite good at detecting that kind of symmetry in the real world. In fact, symmetry is often
associated with beauty in various art forms as well. But, what is it, exactly, that we mean in those settings
when we claim that an object has “symmetry?” One definition states that objects have symmetry if they
“contain parts that can be interchanged without changing the whole.”

The idea is that parts of the whole are so physically similar that we could imagine being unable to tell
the difference if those parts were swapped. Imagine a perfectly cubic cardboard box, centered at the origin
in R?, that is completely devoid of any printing or writing on its surface. Based on the way these hoxes are
created, the box can be opened in two different places that are directly opposite each other, see Figure 2.2.
(Note that I've chosen to take the positive z-axis as coming out of the page, the positive y-axis as heading
right horizontally, and the postive z-axis as pointing up vertically as is frequently done in multi-variable
calculus courses. )

The box looks exactly the same if we were to rotate it 180 around the z-axis, or the y-axis, or the
z-axis (yowll have to trust me that the second box has actually been rotated because, of course, we can’t
tell!). Notice, however, that if we only rotate 90 degrees around either of those axes then we've definitely
changed what the box looks like, thus the box does not have this kind of symmetry. An object that looks
identical after a rotation of some kind is said to have rotational symmetry.

Similarly, we can see that our cardboard box has two identical halves if we were to cut it down the
middle, using the xy-plane or the xz-plane or even the yz-plane (actually there are several other planes that
would work as well). What we mean by identical here is that the two sides are exactly mirror images (or
reflections!) of each other. An object that looks identical after a reflection through some plane (or through
a line if its a 2-dimensional object) is said to have reflective symmetry.
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Rotated 180° Rotated 90° Reflected across
around y-axis. around y-axis. the xz-plane.

Figure 2.2: Cardboard box symmetries.

Observe that if we were to add identical text to each of the sides of the box that tell us which opening
is the top, then the symmetries change. Now, a 180° rotation around the y-axis will not give us the same
box back (of course, neither will a 90° rotation around the y-axis). However, a 180° rotation around the
z-axis will work just fine, see Figure 2.3. These side labels also ruin the reflective symmetry that we had
above because reflections now have the effect of changing how the text looks.
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Rotated 180° Rotated 180° Reflected across
around y-axis. around z-axis. the zz-plane.

Figure 2.3: Labeled cardboard box symmetries.

From a mathematical perspective, we can make the notion of symmetry more precise. To do so, we'll
think of any objects as subsets of real space R™. What we are looking for then, are transformations that we
can apply to real space that will maintain the features of that space while simultancously giving us (what
appears to be) the same object back. Such transformations we will call symmetries of the object. Thus,
a 180° rotation around the y-axis is a symmetry of the unlabeled cardboard box, while the 90° rotation is
not. Similarly, a reflection in the xz-plane is a symmetry of the unlabeled box, but is not a symmetry of the
labeled one.

Given a subset S CR", amap f: R" — R™ is a symmetry of S if:
e [ preserves distance in R™,
e [ maps the set S back to itself, i.e. f(S)=S.

We let E(S) denote the set of all symmetries of S.

Important: Tt is the second condition, that f(S) = S, that makes symmetries bijections when
restricted to S, i.e. f|; € Bij(S) for all f ¢ E(S). Certainly the identity map (dropping the subscript for
simplicity) Id : R™ — R™ defined by Id(z) = = for all z € R™ is a symmetry of S (you should check that it
satisfies both parts of the definition). However, just as in the case of bijections, the fact that f(S) = S as a
whole, does NOT mean that f(z) =z for all # € § (in other words, there do exist other symmetries than
just Id in most cases). The map f might rearrange all of the points in S, it just has to be the case that after
any rearranging, we will have the entire set S covered.

Distance Preserving Maps

Maps that satisfy just the first criterion in Definition 2.3.1 are known as distance preserving maps. To
expand on that notion, a map f : R" — R"™ is said to preserve distance in R™ if for all pairs of points
T=(x1,22,...,20). 7= (Y1.92, ..., Yn) € R" we have

dist (7,7) = dist (f(2), (7)) -

That is, the distances between any pairs of points have to be maintained by application of the map f, so
that the distance between any two points is exactly equal to the distance between their two images under f.




