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Magic squares have a long history, with surviving written examples dating back to at
least 300 BC. In fact, according to Chinese legends, a 3 × 3 magic square that is today
known as the “Lo Shu” square was observed as a pattern on the shell of a tortoise by
Emperor Yu sometime between 2200 and 2100 BC! Since those ancient times, magic
squares have been marveled at and studied in numerous cultures. The idea is to fill in
numbers into a square so that the sum along each row, column, and diagonal are all
equal to the same number—often called the magic constant. For instance, the square
in Figure 1 is a representation of the Lo Shu square. Here the magic constant is 15.

4 9 2

3 5 7

8 1 6

Figure 1 The Lo Shu magic square.

There have been numerous generalizations of magic squares to other shapes. Ely
introduces the idea of magic designs [4]. A design is just a set of “points” and a set
of “lines,” with each line being a subset of points. A magic design is then an injec-
tive function from the points to the natural numbers where the sum along any line is
constant. While Ely focused primarily on designs based on triangles and hexagons,
other designs have since been studied. A particulary nice family of designs comes
from (combinatorial) configurations. These are designs where every line has the same
number of points, and every point has the same number of lines through it. Magic
stars are an example with two lines through every point [9] and more recently Raney
studied magic configurations where three lines pass through every point, and each line
contains three points [8].

Projective planes are particularly nice configurations because the number of points
on a line is the same as the number of lines through a point. Unfortunately, we will
show that finite projective planes are never magic for any subset of the integers. Thank-
fully, there is no reason to limit ourselves to integers. All that is really needed to discuss
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“magicness” is the ability to add the entries along a line. Because of this we consider
making projective planes magic over Abelian groups.

For the special case of the Fano plane (the finite projective plane of order 2), Mies-
ner and the first author [6] show that no magic labelings exist with labels in Z/nZ
for any n. In this paper we further generalize and study the “magicness” of all finite
projective planes. Specifically, for every finite projective plane we will find a group for
which it is magic and for a certain class of projective planes we will classify all groups
for which they can be made magic.

For the interested reader, the authors further generalize the notion of magicness over
Abelian groups to higher-dimensional finite projective spaces in [7].

Projective planes

We summarize some standard results about finite projective planes. For a general
resource on finite projective planes the authors suggest [1] as an introduction and [3]
for more advanced readers.

A projective plane � = (P,L) is made up of a set of points P and a set of lines L,
where each line L ∈ L is a subset of P . For any point x ∈ P we let Lx denote the set
of all lines through x . To be a projective plane the following three axioms must hold.

1. There is a unique line between every pair of points—if x, x ′ ∈ P with x �= x ′, then
there is a unique L ∈ L with x, x ′ ∈ L .

2. Each pair of lines intersects at a unique point—if L , L ′ ∈ L with L �= L ′, then there
is a unique x ∈ P with x ∈ L ∩ L ′.

3. The plane contains a quadrilateral—there exist x1, x2, x3, x4 ∈ P , so that there is
no L ∈ L that contains any three of the points.

A finite projective plane � = (P,L) is just a plane where the number of points |P | is
finite. For finite projective planes the axioms imply some basic facts.

FACT. For a finite projective plane � = (P,L) there exists a number n ∈ N, called
the order of �, and the following hold:

1. Every line contains n + 1 points, so that |L| = n + 1 for all L ∈ L.
2. Every point is on n + 1 lines, so that |Lx | = n + 1 for every x ∈ P .
3. There are an equal number of points and lines, so that |P | = |L| = n2 + n + 1.

It is an open question to classify for which orders n there exists a projective plane,
however, it is known that for any prime p and any k ∈ N, there exists a projective
plane of order n = pk . In fact, these are the only orders for which projective planes
are known to exist. However, finite projective planes have been completely classified
for small orders and for sufficiently small order (≤ 8) they are all constructible in a
uniform way. We will make use of that construction to deal with small order cases and
thus we give it here.

Let Fq be a finite field of order q = pk for some prime p. We construct a projec-
tive plane �q = (Pq,Lq) in the following way. View F

3
q as a vector space over Fq ,

then let Pq = {1-dim subspaces of F3
q} and Lq = {2-dim subspaces of F3

q}. One can
verify that this construction yields a finite projective plane of order q. Since a point
in �q is a line through the origin of F3

q we can describe the points as follows. Given
a nonzero 〈x1, x2, x3〉 ∈ F

3
q , the set [x1, x2, x3] = {〈cx1, cx2, cx3〉 | c ∈ F

∗
q = Fq \ {0}}

describes all points in Pq . The lines in Lq are the planes through the origin in F
3
q . Any

vector v determines a plane through the origin by considering all vectors orthogonal
to v. So the lines Lq are described as [[x1, x2, x3]] = {u ∈ F

3
q | u · 〈x1, x2, x3〉 = 0},
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where 〈x1, x2, x3〉 ∈ F
3
q is a nonzero vector. Notice, for c ∈ F

∗
q , [[cx1, cx2, cx3]] =

[[x1, x2, x3]].
The smallest possible case when q = 2 is a plane with 7 points and 7 lines that is

usually called the Fano plane, see Figure 2. There are 3 points on each line and 3 lines
through each point. The Fano plane is actually the unique finite projective plane of
order 2.

x2 = (0,1,0)

x6 = (1, 1, 0)

x1 = (1, 0, 0)
x5 = (1, 0, 1)

x3 = (0, 0, 1)

x4 = (0, 1, 1)
x7 (1, 1, 1)

Figure 2 The Fano plane, �2.

Nonmagicness

An n × n square is magic if it is labeled with the numbers {1, . . . , n2}, so that each
row, column, and diagonal sum to the same value. We can ask a similar question for
a finite projective plane � = (P,L) of order n. We would like to assign the values
{1, . . . , n2 + n + 1} to the points P so that the sum along any line is the same. Unfor-
tunately, this is impossible, not only for the numbers {1, . . . , n2 + n + 1}, but for any
set of n2 + n + 1 distinct real numbers.

To prove this, we need the incidence matrix A of the projective plane �. Let
x1, . . . , xn2+n+1 be an enumeration of the points P and L1, . . . , Ln2+n+1 be an enu-
meration of the lines L. The rows of A will be indexed by the lines of � and the
columns by the points. Given Li ∈ L and x j ∈ P , the entry Ai, j is 1 if the point x j

is on the line Li , and 0 otherwise. For example, working from Figure 2, if we take
L1 = x2x3, L2 = x1x3, L3 = x1x2, L4 = x1x4, L5 = x2x5, L6 = x3x6, and L7 = x4x5,
then the incidence matrix for Fano plane is as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4 x5 x6 x7

L1 0 1 1 1 0 0 0
L2 1 0 1 0 1 0 0
L3 1 1 0 0 0 1 0
L4 1 0 0 1 0 0 1
L5 0 1 0 0 1 0 1
L6 0 0 1 0 0 1 1
L7 0 0 0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

An important observation to make here is that the incidence matrix for any finite
projective plane will be invertible over R. A beautiful way to prove this fact is to con-
sider the matrix AAT. Observe the i, j-entry of the matrix AAT is exactly the number
of points on the intersection of the lines Li and L j. Since there are n + 1 points on every
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line, we can see that the diagonal entries of AAT are all equal to n + 1. In addition,
distinct lines always intersect at a single point and hence all of the other entries in AAT

are equal to 1. One can then use row reduction to show that det(AAT ) = (n + 1)2nn2+n

(see, e.g., [3]). Thus AAT, and more importantly A itself is invertible.
The incidence matrix also gives us a natural way of translating from a labeling of

the points in P to the sums of those labels along each line in L. To assist in this
translation we view labelings as functions on the set of points P . Let f : P → R

denote a function so that the sum along each line in L is the same magic constant
c ∈ R. If such an f exists, which is also injective, then we say that � is magic over R.
The magic constant condition can then be represented by the matrix equation Af = c,
where A is the incidence matrix for �, f is the column vector [ f (x)]x∈P , and c is the
vector with all entries equal to c. Using this data, we demonstrate that the plane � is
not magic over R.

Proposition 1. No finite projective plane � = (P,L) is magic over R.

Proof. Let f : P → R be any real valued function on the points P . f is a column
vector with the rows indexed by P . If A is the incidence matrix for �, then Af will be a
column vector with the rows indexed by L. Hence we may think of Af as a real-valued
function on L. The value of the row indexed by L ∈ L is exactly

∑
x∈L f (x), the sum

of f along L , by construction of A.
We are interested in when Af is a constant function. However, as mentioned above,

the incidence matrix is invertible. This means that the equation Af = c has a unique
solution which, therefore, must be the constant function f (x) = c

n+1 for all x ∈ P .
Since f is not injective, it follows that � is not magic over R.

In light of the result above, we seek to find conditions under which a finite projec-
tive plane � = (P,L) can be considered magic. We must be able to add the values
assigned to points and the addition must be commutative since the points are not in
any particular order. So we let G be an Abelian group and consider a G-valued func-
tion v : P → G on the points of a projective plane. For any subset S ⊂ P we then
define v(S) = ∑

x∈S v(x). The function v is called line invariant if v(L) = v(L ′) for
all L , L ′ ∈ L. When this holds we call v(L) the magic constant.

The set of line invariant functions has a really beautiful structure, but unfortunately,
it includes the constant functions which are trivially line invariant because every line
has the same number of points. Since constant functions do not get at the nature of
magicness, we will only refer to v as a pseudomagic function when it is both line
invariant and nonconstant. If, furthermore, v is actually injective, then we will call v

magic.
We say a finite projective plane � = (P,L) is pseudomagic over an Abelian group

G (resp. magic over G) and G admits a pseudomagic (resp. magic) function v if and
only if there exists a pseudomagic (resp. magic) function v : P → G. As we will show
in Theorem 2, � will not admit a pseudomagic function over a group G unless that
group contains elements of finite order. Groups that do not contain any elements of
finite order are called torsion-free groups.

Theorem 2. Let G be an Abelian torsion-free group and let � = (P,L) be a finite
projective plane. Then � is not pseudomagic over G.

Proof. Let v be a line invariant G-valued function on P . Let H be the subgroup of
G generated by the values v take on P , so that H = 〈v(x) | x ∈ P〉. H is a finitely
generated torsion-free Abelian group and thus H ∼= Z

k for some k ∈ N (see, e.g., [2]).
We may therefore view v as a Z

k-valued function, and we may write

v(x) = (v1(x), v2(x), . . . , vk(x)) ∈ Z
k,
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so that each component function vi maps P → Z. Since v(L) is independent of L ∈ L,
it also holds that vi(L) is independent of L for each i . By Proposition 1 each vi is a
constant function and hence v is constant on P as well.

Magicness

In order to find a group over which a projective plane is magic we must look at torsion
groups. Cyclic groups are a natural place to start. We begin by classifying cyclic groups
that admit a pseudomagic function for a given projective plane. Throughout the section
let � = (P,L) be a projective plane of order n and let m ∈ N.

One way to attempt to find a pseudomagic function from P to Z/mZ is to create a
function that is constant on a chosen line L and zero on all points off of L . As it turns
out, if the constant is chosen carefully, then the function will be line invariant. More
precisely, given any line L ∈ L, we define the function vL : P → Z/mZ as follows:

vL(x) =
{ m

(n,m)
if x ∈ L

0 if x �∈ L
, (1)

where (n, m) is the greatest common divisor of n and m. Notice that when m divides
n, vL is the characteristic function of L . As an example, consider the Fano plane (of
order n = 2) and the group G = Z/6Z (so that m = 6). We may choose the line L1,
then the function vL1 would correspond to labeling the points on that line by 3, see
Figure 3.

3

30

0 3
0

0

Figure 3 The pseudomagic function vL1 from the points in the Fano plane to Z/6Z.

The function vL1 is line invariant because the sum along any line is 3 ∈ Z/6Z.
We now show more generally that the functions vL for each L ∈ L are always line
invariant. This fact relies directly on the incidence structure of finite projective planes.

Lemma 3. vL : P → Z/mZ is line invariant.

Proof. Observe that we have

vL(L) =
∑
x∈L

m

(n, m)
≡ (n + 1)m

(n, m)
≡ nm

(n, m)
+ m

(n, m)
mod m. (2)

However, because m divides nm
(n,m)

, we have vL(L) = m
(n,m)

mod m. Let L ′ ∈ L be any
other line. We know that L ′ intersects L in exactly one point x . Thus, vL(x) = m

(n,m)

and vL(x ′) = 0 for all other x ′ ∈ L ′. It follows that vL(L ′) = m
(n,m)

as well.
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Corollary 4. If (n, m) > 1, then � is pseudomagic over Z/mZ.

Proof. Let vL be defined as in Equation 1 for any line L . Then, by definition vL = 0
if and only if (n, m) = 1. Thus, when (n, m) �= 1, the line invariant function vL is
nonzero and is therefore a pseudomagic function on P for each line L ∈ L.

It turns out these are the only cyclic groups for which � can be made pseudomagic.

Proposition 5. � is pseudomagic over Z/mZ if and only if (n, m) �= 1. Furthermore,
� is never magic over Z/mZ.

Proof. The “if” is proven in Corollary 4. For the other direction assume there is a
line invariant function v : P → Z/mZ with magic constant g ∈ Z/mZ. Let a, b ∈ P
and let L = ab be the line containing a and b and let Lc be the set of points not on L .
Each point of Lc is on exactly one line in the set of lines La\{L} (recall La is all lines
through a). Therefore,

v(Lc) =
∑

L ′∈La\{L}
(v(L ′) − v(a)) = ng − nv(a),

since there are n lines in La\{L} and a is not in Lc. Similarly, v(Lc) = ng − nv(b) and
hence nv(a) = nv(b) in Z/mZ. Since a, b were arbitrary, we may conclude that nv(x)

is independent of x ∈ P . Therefore, n(v(x) − v(y)) = 0 for all x, y ∈ P . Hence,
for all x, y ∈ P , v(x) − v(y) is in the kernel of the homomorphism φn : t �→ nt in
Z/mZ, and so each v(x) is in the same coset of the kernel. The homomorphism has
|Ker(φn)| = (n, m), and so a line invariant function v : P �→ Z/mZ can take on up
to (n, m) different values. Thus, when (n, m) = 1, v is a constant function and not a
pseudomagic function. Furthermore, (n, m) < n2 + n + 1 = |P |, so v can never be
magic.

From Corollary 4, it is not hard to find a group G which admits a magic function
on �. Take one copy of Z/nZ for every line in L. That is let G = (Z/nZ)k , where
k = |L| = n2 + n + 1. Next, choose an enumeration of L = {L1, L2, . . . , Lk} and
define v : P → (Z/nZ)k as v(x) = (vL1(x), vL2(x), . . . , vLk (x)). By Corollary 4 this
is a pseudomagic function. Recall that to be magic this function must also be injective.
The injectivity of v follows from the fact that for any two points x1, x2 ∈ L there exists
a line that contains one of them but not the other.

This construction seems inefficient as |G| is much larger than |P | and the exponent
k depends on �. Next, we find the smallest r so that � is magic over (Z/nZ)r. Since
|P | = n2 + n + 1 we know r ≥ 3, and in fact, we show r = 3 works. Our general
proof relies on having n ≥ 5 and hence we treat the cases n = 2, 3, and 4 separately.

Theorem 6. If � = (P,L) is a projective plane of order n ≥ 5, then � is magic for
the group G = (Z/nZ)3.

Proof. The plan is to create three separate pseudomagic functions v1, v2, and v3

from P to Z/nZ which together define a magic function (v1, v2, v3) : P → G.
To begin, we label some points and lines for reference. Let x be any point in P

and let L0, L1, . . . , Ln be an enumeration of the n + 1 lines through x . Next, let
y be another point on Ln and let L ′

0, . . . , L ′
n−1 denote the other n lines through y.

Then, for each 1 ≤ i, j ≤ n − 1, we let wi, j = Li ∩ L ′
j as in Figure 4a. Finally, let

z1, z2, . . . , zn−1 denote the points in Ln \ {x, y}. For now the choice of the zk is arbi-
trary, but later we will be more specific in our labeling.

From this point forward a couple of minor details in the proof depend on the parity
of n. The main technical difference stems from the fact that the sum of all of the
elements in Z/nZ is 0 when n is odd, but is n

2 when n is even. As it turns out, our
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w0, j

w0, 0 wi, 0 y

x

wi, j w0, h′

w1, 1

(b)(a)

wh, 1
w0, 0

w1, 1

y

w0, 1 z2

zn–2

z1

Figure 4 Labeling P.

construction is unaffected by this difference, but for simplicity we choose to deal with
n odd first, and then explain why it works for n even as well.

For n odd define the first two pseudomagic functions as follows:

v1 =
n∑

k=1

(k − 1)vLk , v2 =
n∑

k=1

(k − 1)vL ′
k
. (3)

Since x is on each Lk we have v1(x) = ∑n
k=1(k − 1) = 0 in Z/nZ. Similarly, v2(y) =

0. The function v′ := (v1, v2) : P → (Z/nZ)2 then already has unique values on most
of the points. The only equalities are the following:

v′(w0,0) = v′(w0,1) = v′(w1,0) = v′(w1,1) = (0, 0)

v′(w0,i ) = v′(w1,i ) = (0, i − 1) 2 ≤ i ≤ n − 1
v′(wi,0) = v′(wi,1) = (i − 1, 0) 2 ≤ i ≤ n − 1
v′(zi) = v′(z j ) = (n − 1, n − 1) 1 ≤ i, j ≤ n − 1

(4)

since v′(wi, j ) = (i − 1, j − 1) for 1 ≤ i, j ≤ n − 1.
We now create a third function v3 to distinguish points which have equal values on

v′. This is a delicate construction which requires a careful ordering of the points zk

with respect to other points on the plane. Let z2 = Ln ∩ w0,0w1,1 and let J ′ be the line
w1,0z2. Next, choose an h so that wh,1 ∈ L ′

1\{w0,1, y, w1,1, J ′ ∩ L ′
1}. This is possible

since n ≥ 5 and so there must be at least 6 points on a line. Now let z1 = w0,0wh,1 ∩ Ln ,
and zn−2 = w1,0wh,1 ∩ Ln . Once again, since n ≥ 5, zn−2 �= z2. Label the remaining
points on Ln as {z3, . . . zn−3, zn−1}, and let L ′′

i = w0,0zi for 1 ≤ i ≤ n − 1. Define the
line J = w1,0zn−2. For future reference we will let w0,h′ = L0 ∩ J . Figure 4b depicts
the specific labeling that we have described with J ′ dashed and J solid.

We now define v3 : P → Z/nZ by

v3 =
n−1∑
k=1

(k − 1)vL ′′
k
+ (n − 1)vL0 + 2vJ . (5)

All that is left is to check that v3 differentiates the points that had equal values under
v′. First, check the zk . Observe that v3(zk) = k − 1 if 1 ≤ k ≤ n − 1 with k �= n − 2,
and v3(zn−2) = n − 1. The difference for zn−2 is the inclusion of 2vJ in the definition
of v3.

Next, check the pairs wi,0 and wi,1. For 2 ≤ i ≤ n − 1, v3(wi,0) = 0. For each of
those i except h there is a unique j with 2 ≤ j ≤ n − 1 so that wi,1 ∈ L ′′

j . In these
cases v3(wi,1) = j − 1 �= 0. For h, wh,1 = L ′′

1 ∩ J , so v3(wh,1) = 2.
Now, check the pairs w0,i and w1,i . For each 1 ≤ i ≤ n − 1 there is a unique j with

1 ≤ j ≤ n − 1 so that w1,i ∈ L ′′
j , we therefore have v3(w1,i ) = j − 1 �= n − 1. Recall,
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h′ is defined so that w0,h′ = J ∩ L0. For 1 ≤ i ≤ n − 1 with i �= h′ we have v3(w0,i ) =
n − 1, and v3(w0,h′) = 1. We need to show v3(w1,h′) �= 1. We know v3(w1,1) = 1 since
w1,1 ∈ L ′′

2. If h′ = 1, then J = w0,1wh,1, but w1,0 ∈ J and w1,0 �∈ w0,1wh,1, so h′ �= 1.
Finally, check w0,0, w0,1, w1,0, and w1,1. Observe that v3(w0,1) = n − 1, v3(w1,0) =

2, v3(w1,1) = 1, and v(w0,0) = 0.
Thus v = (v1, v2, v3) : P → (Z/nZ)3 is injective and hence magic when n is odd.

In the case when n is even define v1, v2, v3 in the same fashion, but now v1(x) =
v2(y) = v3(w0,0) = n/2. Since n ≥ 5 we have 2 < n

2 < n − 1 and thus these changes
do not impact the proof.

We now treat the cases n = 2, 3, and 4 separately.

Proposition 7. The projective planes of order n = 2, 3, and 4 are magic over G =
(Z/nZ)3.

Proof. For each 2 ≤ n ≤ 4 there is a unique projective plane of order n [5] and
hence we may use the construction of the plane �n described earlier. Recall that each
point a ∈ Pn can be represented in the form a = [x, y, z] = {〈cx1, cx2, cx3〉 | c ∈ F

∗
q}

for some nonzero vector 〈x, y, z〉 ∈ F
3
n . In the n = 2 case we have the Fano plane (see

Figure 2) and the function

v(a) = (x, y, z)

is magic. In the n = 3 case, define the following functions:

v1(a) = x2 + z2 + xy + 2yz + 2xz
v2(a) = y2 + x2 + yz + 2zx + 2yx
v3(a) = z2 + y2 + zx + 2xy + 2zy

and then v = (v1, v2, v3) is magic.
These functions are well defined on the sets [x, y, z], since the components are

homogeneous polynomials of degree n − 1 and for any c ∈ Fn we have cn−1 = 1. One
can directly check these that these functions are magic.

For n = 4 we need a significant modification of our construction from Theorem 6.
We are working with F4 = {0, 1, α, α + 1}, where α2 = α + 1 and we set a0 = 0, a1 =
1, a2 = α, and a3 = α + 1. We then let wi,0 = [1, 0, ai ], w0,i = [1, ai , 0], and zi =
[0, 1, ai ] for 0 ≤ i ≤ 3, and we let y = [0, 0, 1] and x = [0, 1, 0]. Next we define lines
Li = xwi,0, L ′

i = yw0,i , L ′′
i = w0,0zi , and the rest of the points wi, j as in Theorem 6.

Using these lines we again define v1 and v2 as in (3). This leaves us with the same
equalities described in (4). We define the line J = y1w2,1 and then set

v3 = 3vL0 + vL ′′
2
+ 2vL ′′

3
+ vJ .

One can then directly check that v = (v1, v2, v3) is magic.

To this point we have a relatively small group for which a projective plane is magic,
however in the case when n is a prime we can say more. It turns out that in some sense
(Z/nZ)3 is the only group for which � is magic.

Theorem 8. If n, the order of � is prime and � is magic over some Abelian group G,
then (Z/nZ)3 is a subgroup of G.

Proof. Let v : P → G be a magic function. We may assume G is finitely generated
since we may work with the subgroup generated by Im v. Since G is finitely gener-
ated there exist n1, . . . , nk ∈ N such that G = ⊕k

i=1 Z/niZ. Thus v = ⊕k
i=1 vi , where

vi : P → Z/niZ is the natural projection of v into Z/niZ, and each vi is line invariant.
Without loss of generality we assume each vi is nonconstant and hence pseudomagic.
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Since n is prime, Proposition 5 implies that n | ni , and furthermore, the proof shows
|Im vi | ≤ (n, ni ) = n. This means k ≥ 3 as otherwise |Im v| ≤ n2 < |P | which con-
tradicts v being injective.

When n is not prime it might be possible for smaller groups to admit a magic func-
tion. If m divides n and m > 1, then mn2 > n2 + n + 1 = |P |, so � could potentially
be magic over a group of order mn2.

OPEN QUESTIONS

1. When m divides n with m > 1, is � magic over (Z/nZ)2 × Z/mZ?
As it turns out, for planes of the form �q when q is prime, every line invariant

function to Z/mZ is a linear combination of the vL functions. However, this is not
true when q is not prime (see [7]). In the nonprime case there are special line invariant
functions which are not linear combinations of the vL ’s. Our proof of Theorem 6 does
not make use of these special functions. Therefore, it seems reasonable to expect that if
our open question is answered in the affirmative, then the proof will require the special
functions.

Another question that one could ask is whether or not all magic functions to larger
groups G actually come from functions to (Z/nZ)3. A more technical way to describe
this is given below.

2. Suppose that v : � → G is a magic function and � is order n, under what
conditions is there a surjection f : G → (Z/nZ)3 such that f ◦ v : � → (Z/nZ)3 is
still magic?
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Summary. We study a generalization of magic squares, where the entries come from the natural numbers, to
magic finite projective planes, where the entries come from Abelian groups. For each finite projective plane we
demonstrate a small group over which the plane can be labeled magically. In the prime order case we classify all
groups over which the projective plane can be made magic.
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