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 fk
 CAYLEY GRAPHS OF SYMMETRIC GROUPS GENERATED BY

 REVERSALS

 DAVID NASH*

 1. Introduction. An important measure of connectivity in a graph is its ex
 pansion constant. A family of fc-regular graphs is called an expander if this constant
 is uniformly bounded away from zero. Expanders have many important applications
 in computer science (we refer the reader to [4] or [3] for a good list), and what one
 typically needs for these applications is an explicit construction. One of the standard
 methods for constructing expanders uses Cayley graphs of finite groups (for example,
 the "Ramanujan graphs" constructed by Lubotzky, Phillips, and Sarnak [5]). With
 regard to expander problems, Lubotzky poses an interesting question (Problem 10.3.4
 in [4]). He asks whether Cayley graphs of the symmetric groups Sn could contain a
 family of expanders. In attempting to answer this question, generating sets consisting
 of involutions are a natural place to begin. The special case of Cayley graphs gener
 ated by transpositions has already been well studied (see, e.g., [1] and [2]), but there
 can be no true expanders in such a set since the number of transpositions needed to
 generate Sn, and hence the regularity of the Cayley graph, grows with n. In this paper
 we consider Cayley graphs of Sn generated by "reversals". By definition a reversal is
 an involution that flips an entire interval. For example, the permutation 154326 is a
 reversal since it flips the interval 2345. In looking for expanders, reversals (at least
 on first glance) appear to be a better special case to study because there exist finite
 generating sets that do not grow with η (any Sn can be generated by just 3 reversals,
 Proposition 1). It turns out, however, that reversals do not do the trick. The main
 result of this paper is to show that no family of Cayley graphs of the symmetric group
 generated by reversals can be a family of expanders.

 2. Notation and Terminology. Before we can begin to discuss our assertion
 we provide the necessary definitions, notation, and propositions. Let G be a group and
 Τ a subset of G. Then the associated Cayley graph, denoted by X (G, T), is the graph
 whose vertices are the elements of G and whose edges correspond to pairs (51,52) £ G
 such that g-2 = git for some t e T. Given a subgroup Η C G, the associated Schreier
 graph, denoted X(H\G,T), is the graph (with loops) whose vertices are the right
 cosets H\G with an edge joining Hg to Hgt whenever g £ G and t £ T. (The reader
 may be more familiar with the notation G/H for the set of cosets. However, we have
 adopted the convention that edges are defined by the right action of G on itself, hence
 the vertices of the Schreier graph will correspond to the set of right cosets, which we
 denote instead by H\G.) A priori Cayley and Schreier graphs are directed graphs,
 however, for us Τ will be a set of involutions so we can assume that the graphs are
 undirected. (For any vertex pair g\, 32 £ G the same involution t £ Τ will both take
 gi to g-2 and g2 to g\; thus edges in the Cayley graph come in opposite pairs which
 we identify as a single undirected edge.) For us, G will be the symmetric group Sn.
 Given two elements a,b £ Sn, we follow the convention that ab is the composition
 b ο a; for example, in cycle notation, (123)(12) = (23). An involution t in Sn is a
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 144 DAVID NASH

 reversal if there exist i, j with 1 < i < j < n, such that

 t(p) =
 ρ if ρ < i or ρ > j

 j+i-p iii<p<j.

 We denote such a reversal by t = [i,j]. In this paper, we study Cayley graphs
 X(Sn,T) where Τ consists of only reversals (and Τ generates Sn). For example,
 if we take G = S3 and Τ = {[1,2], [2,3]}, the resulting Cayley graph is shown in
 Figure 1 (for the vertex labels, we use the one-line notation for permutations in S3).
 The relevant Schreier graph for us will be the one corresponding to the subgroup

 123 213

 σι

 132 · »312

 σ2

 231 321

 123  213

 132 • *312

 231 321

 Fig. 1. Cay ley graph for S3 with generators σ\ = [1, 2] and 02 = [2, 3]

 Η = S2 x Sn-2- It can be shown that in such a Schreier graph the vertices correspond
 to 2-element subsets of {1,2,3,···, n}■ For example, if η = 5, the Schreier graph
 X(H\G, T) will have (2) vertices, and the edges will depend on the particular choice
 of T. Figure 2 shows such an example with Τ = {[2,4], [1,4], [2,5]}. Given a graph X,

 @2
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 Fig. 2. Schreier graph for S2 x S2\S& with generators σ\ = [2,4], σι = [1,4], as = [2,5]

 we let V{X) denote the vertex set of X. If A, Β C V(X) form a partition of V(X),
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 GROUPS GENERATED BY REVERSALS 145

 we write V"(X) = A tt) Β and let E(A, Β) denote the set of edges joining elements of
 A to elements of B. The expansion constant, e(X), of a graph X is defined by

 ω IWyWI. A^B=V(X) \A\\B\

 A family Τ of graphs is an expander (or expanding family) if there exists a constant
 c > 0 such that

 c < e{X)

 for all graphs X in the family Τ. The expansion constant is a measure of the connec
 tivity of a graph (the larger e(X) is, the more highly connected X is). In most explicit
 constructions of regular families one usually sees this measure approach zero as one
 considers larger and larger graphs in the family. What makes an expander useful is
 that this measure of connectivity is bounded away from zero (the connectivity is above
 a certain measure) regardless of how large X € Τ is. Therefore, we could use the
 construction for an expander to create highly connected networks for any arbitrarily
 large set of nodes. Note that the graphs in an expanding family must be connected
 (otherwise selecting A to be one component of X would result in \E(A,B)\ = 0).
 In looking for an expanding family of Cayley graphs of the form Τ = {X(S„, Tn)},
 then, this means that each set of reversals Tn must generate Sn. Restricting gener
 ating sets to transpositions cannot produce an expanding family since any set Τ oik
 transpositions fixes at least n — 2k numbers, and therefore (for sufficiently large η) Τ
 cannot generate Sn. On the other hand, the following theorem shows that, at least
 in principle, one might find a family of expanders from Cayley graphs of Sn based on
 reversals.

 Proposition 1. Any symmetric group Sn can be generated by a set of 3 rever
 sals.

 Proof. Let a, b, and c be the reversals a = [1,2], b = [1, n], and c = [2, n\. It is well
 known that the set of transpositions Ρ = {(12), (23),..., ((η — l)n)} is a generating
 set for the symmetric group Sn, therefore it is sufficient to show that each element of
 Ρ can be expressed as a product of the elements a, b, and c. By starting with a and
 alternating conjugations by b and c we eventually obtain all of the elements in Ρ:

 (12) = a
 ((η — l)n) = bab

 (23) = cbabc
 ((η — 2 )(n — 1)) = bcbabcb

 (34) = cbcbabcbc

 Thus, the set {a, b, c} generates Sn. □ In fact, the number 3 is optimal, as the following
 Proposition shows.

 Proposition 2. If Τ is a set of involutions that generates Sn (for η > 3), then
 \T\ > 3.

 Proof. It suffices to show that no 2 involutions generate Sn for η > 3. We
 show this by considering the Cayley graphs of such cases. The Cayley graph for a
 2-involution generating set has n\ vertices and is 2 regular. There is only one way to
 create a connected, 2-regular graph with n\ vertices and that is with a length η I cycle.
 The two edges coming from each vertex are labeled by our two chosen involutions,
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 146 DAVID NASH

 respectively. Thus, by starting at any vertex we must be able to alternate the usage of
 our two involutions until we pass through every vertex in the graph and then return
 to our starting point. Therefore, the product of our two involutions must be of order
 n\/2. But for η > 3, Sn contains no element of order n\/2. □

 3. The Main Theorem. In this section we prove our main theorem:
 THEOREM 3. Let Τ = {X(Sn,Tn)} be a family of Cayley graphs of symmetric

 groups such that for each n, Tn is a set of k reversals. Then Τ is not an expander.
 To prove this theorem we need the following lemma which allows us to substitute the
 more manageable Schreier graphs for our Cayley graphs.

 LEMMA 4. If {X(Gn,Tn)} is an expander and Hn C Gri are subgroups, then
 {X(Hn\Gn,Tn)} is an expander.

 Proof. Let X be one of the Schreier graphs X(H\G,T) in our family and let X
 be the corresponding Cayley graph X(G,T). Then there is a natural map of graphs
 π : X —·> X given on the vertices by the projection G —> H\G. Given A C H\G,
 we let A C G denote the inverse image π_1(^4). Let A l+l Β be a partition of V(X)
 (= H\G). Letting m be the order of H, we have |^4| = m\A\, |B| = rn\B\, and
 \V(X)\ = m\V{X)\. It also turns out that each edge in X is the image of exactly m
 edges in X. To see this note that an edge e in X corresponds to a pair of cosets Hgi
 and Hg2 such that Hgi = Ηg\t for some t £ Τ. This means that for every h £ Η
 there is an h! £ Η such that hgi = h'g2t. Each pair hgi, h'g2 determines an edge, e
 in X such that 11(e) = e and there are exactly m of them. From this it follows that:

 \E(A,B)\ = m\E(A,B)\,

 and therefore,

 \E(A,B)\\V(X)\ |£(Λ,·Β)|ΐη*)|
 \A\\B\ \A\\B\

 Since partitions of the form A l+l Β are only some of the possible partitions of V(X),
 taking infimums on both sides over all partitions of V(X) and V{X) respectively gives

 e(X) < e(X).

 From our definition of an expander, e(X) is uniformly bounded below by a positive
 constant for all X in our family of Cayley graphs. Hence, e(X) is also bounded below
 by this same constant for all X in our family of Schreier graphs. □ We are now in a
 position to prove our theorem.
 Proof of the Theorem: Given Τ — X(Sn,Tn) as in the Theorem, let T' =
 {X(Hn\Sn, Tn)} be the family of Schreier graphs corresponding to the subgroups
 Hn = S2 χ Sn-2 Q Sn. By the Lemma it suffices to show that T' is not an expanding
 family. Let X(Hn\Sn,Tn) and suppose that Tn — {L,t2,..., G} is a finite set of
 reversals in Sn. Then we identify V(X) with the set { {i. j) \ i,j £ {1,2,..., n}, i φ j}
 and note that edges connect {i,j} to {i', j'} whenever i' = t(i) and j' = t(j) for
 some t £ Tn. Let A = {{1,2}, {2,3}, {3,4},..., {η — 1, n}} and let Β = V(X) — A.
 Note that the reversal t = [i,j] maps all elements of A back to A, except possibly for
 {i — 1 ,i} and {j,j + 1}. Thus each reversal in Tn contributes at most 2 edges to the
 set E(A, B). This means \E(A,B)\ < 2k so,

 |£(Λ·Β)Ι·ιηχ)ΐ< a
 |A||JJ| 1 1 (n— 1)1(2) 1)]
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 GROUPS GENERATED BY REVERSALS 147

 which simplifies to

 \E(A,B)\ 2 kn
 W™-(n-D(n-2)·

 Since the expression on the right goes to zero (note k is fixed) as τι —> oo, T' cannot
 be an expander. Thus, by Lemma 4, Τ is not an expander. 0 Note that even
 letting \Tn\ grow like o(n), we still cannot obtain a uniform lower bound on expansion
 constants since we would simply change the right hand side of our inequality to

 2η * o(n)
 (τι — l)(n — 2)'

 which still goes to zero as η —> oo. A natural question then is exactly what growth
 rate is needed. For example, can we form an expanding family by allowing the growth
 of \Tn\ to be of order O(n)? Results of this type are already known for the case when
 Tn is a set of transpositions [2] or Tn is a union of conjugacy classes [6].

 4. Acknowledgements. This paper is the result of a summer research project
 funded by the Panello Fund of the Department of Mathematics and Computer Science
 at Santa Clara University. The author is grateful for this support and the guidance
 of his faculty mentor Richard Scott.
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