
 Page 1 of 14

Counting Rules for Software Size Measure v2

This document is used as part of a research project to determine
whether a new Software Size Measure [1] will produce better estimates
of work effort when compared to existing effort prediction models.

July 10, 2012

David P. Voorhees
Le Moyne College

1419 Salt Springs Road
Syracuse, New York 13214

Contents
1. Introduction .. 2

1.1 Glossary ... 2

1.2 Structure of Software Knowledge ... 2

1.3 Structure of Document ... 2

2. Identify Software Artifacts, Entities, & Attributes .. 3

2.1 Rules for Identifying Software Artifacts .. 3

2.2 Rules for Identifying Software Entities ... 3

2.3 Rules for Identifying Software Attributes ... 4

3. Count Software Attributes .. 6

3.1 Rules for Counting Software Attributes .. 6

Appendix A – Modeling Technique Duplicate Counting Rules.. 8

Appendix B – Modeling Technique Notations .. 11

Appendix C - Document History .. 14

Appendix D - References ... 14

 Counting Rules for Software Size Measure v2 (SSMv2)

 Page 2 of 14

Last Updated July 10, 2012 Copyright 2009-2012. David P. Voorhees. All rights reserved. SwSizeV2_CountingRules.docx

1. Introduction
This document describes rules associated with the software size measure version 2 (SSMv2) [1]. These
rules describe how to identify software artifacts, entities, and attributes, and then how to count
software attributes.

1.1 Glossary
The following terms are defined and used within this document.

Term Definition

software artifact A product that is created/updated as part of a software development project and results
from implementing a software development process.

For purposes of the SSMv2, a product is a software artifact only if (1) it meets the above
definition and (2) the work effort in producing the product is known (recorded).

software attribute A characteristic or aspect of a product or sub-product that is created/updated as part of a
software development project, results from implementing a software development
process, and is contained within a software entity.

For purposes of the SSMv2, a characteristic or aspect is a software attribute only if (1) it
meets the above definition and (2) the instances of the characteristic or aspect can be
counted using the counting rules described within this document.

software entity A product or sub-product that is created/updated as part of a software development
project, results from implementing a software development process, and is contained
within a software artifact.

For purposes of the SSMv2, a product or sub-product is a software entity only if it meets
the above definition. Note that the work effort in producing the software entity may be
known (recorded). When the work effort is known, it shall be used in SSMv2.

1.2 Structure of Software Knowledge
The artifact, entity, and attribute terms represent a hierarchy of knowledge as expressed in a software
product. The logical data model below illustrates the relationships between these terms.

1.3 Structure of Document
Section 2 describes the rules for identifying software artifacts, software entities, and software
attributes. Section 3 then describes the rules for counting software attributes. Appendices A and B
provide more details on modeling techniques, appendix C provides a document history, and appendix D
lists references.

Software

typeSDLC

version

name

Artifact

type

version

Entity

type

Attribute

type

count

* * * 1 1 1

 Counting Rules for Software Size Measure v2 (SSMv2)

 Page 3 of 14

Last Updated July 10, 2012 Copyright 2009-2012. David P. Voorhees. All rights reserved. SwSizeV2_CountingRules.docx

2. Identify Software Artifacts, Entities, & Attributes
Before we can count instances of software attributes, rules must be established for identifying software

artifacts, software entities, and software attributes.

2.1 Rules for Identifying Software Artifacts
A software artifact is a software deliverable that is created and/or updated as part of a software
development project. It represents a set of related knowledge packaged into a software product or
deliverable and typically results from implementing a software development phase or activity. In order
for a software artifact to help describe the size of software, and thus be used to estimate effort, the
work effort expended to produce the artifact must be known (i.e., recorded). Note that the work effort
is the cumulative effort of all tasks, regardless of role(s) performing each task, that are directly
associated with gathering and storing knowledge contained within the artifact.

A software artifact type identifies a type of software knowledge. The types of software knowledge used
with the SSMv2 are as follows.

 Feasibility and Planning e.g., feasibility study or project plan.

 Requirements Analysis e.g., requirements document.

 Design e.g., high-level design document, detailed design document.

 Code e.g., program code, html/xml code.

 Test e.g., test plan, test cases.

 Implement e.g., implementation/installation plan.

A software artifact instance may contain knowledge from one or more software artifact types. For
example, one artifact instance may contain both Requirements Analysis and Design knowledge, or may
contain both Code and Test knowledge.

2.2 Rules for Identifying Software Entities
A software entity is a subset of a software artifact that is created and/or updated as part of a software
development project. (Note that one software artifact may contain one or more software entities.) It
represents a subset of all the knowledge stored in the software artifact and typically results from using
methods and techniques associated with a software development phase or activity. A software entity
may include the work effort expended to produce the entity, but this is not required.

Knowledge is represented in a software entity using diagrams, text, and/or code.

2.2.1 Identifying Diagram-based Software Entities
When a software artifact contains one or more diagrams, each diagram is identified as a software entity
and is measured (i.e., its attributes counted) as follows:

1. When a reference exists which describes the notation and semantics of the underlying modeling

technique, use this reference to identify and count the software attributes. (See Appendix B for a
description of some structured design modeling techniques.)

2. Otherwise, when the diagram itself includes a description of the notation and semantics being used,
use this information to identify and count the software attributes.

3. Otherwise, the diagram shall be measured (counted) as a generic diagram with only one (generic)
attribute instance.

 Counting Rules for Software Size Measure v2 (SSMv2)

 Page 4 of 14

Last Updated July 10, 2012 Copyright 2009-2012. David P. Voorhees. All rights reserved. SwSizeV2_CountingRules.docx

2.2.2 Identifying Text-based Natural Language Software Entities
When a software artifact contains text, software entities will be identified and measured (i.e., its
attributes counted) as follows:

1. When a software artifact contains document sections, each section containing text-based

knowledge shall be identified as a text-based entity instance.
2. Otherwise, the entire software artifact instance is identified as one text-based entity instance.

2.2.3 Identifying Code-based Programming Language Software Entities
When a software artifact contains program code, the software entities will be identified and measured
(i.e., its attributes counted) based on the type of programming language being used, as follows:

 For object-oriented program code, the software entity instances are:
o Class definition
o Files
o Method definition
o Source code
o Tag code

 For structured (imperative) program code, the software entity instances are:
o Files
o Function definition
o Source code
o Tag code

2.3 Rules for Identifying Software Attributes
A software attribute is a characteristic or aspect of a product or sub-product that is created and/or
updated as part of a software development project. It represents a subset of all knowledge stored in the
entity and typically results from implementing a software development activity or task. A software
attribute does not have work effort associated with it.

Rules for identifying software attributes are based on whether the knowledge is represented using
diagrams, text, and/or program code.

2.3.1 Identifying Diagram-based Software Attributes
When a software entity instance is a diagram, attribute instances shall be identified as follows:

 When the semantics of the modeling technique defines each notation as conveying distinct
knowledge, then each instance of this notation represents distinct knowledge. An example of this is
a relationship between two entities in an entity-relationship diagram.

 When the notation of the modeling technique includes a label (text) to help identify distinct
instances, then each instance with a unique label represents distinct knowledge. An example of this
is the data flow diagram process notation, which includes a name to distinguish one process from
another. The term named attribute instance refers to this labeling of diagram notation.

2.3.2 Identifying Text-based Natural Language Software Attributes
When a software entity instance is text-based, attribute instances of English text shall be identified using
the paragraph structure. That is, a paragraph represents the only type of text-based software attribute
that will be identified and counted.

 Counting Rules for Software Size Measure v2 (SSMv2)

 Page 5 of 14

Last Updated July 10, 2012 Copyright 2009-2012. David P. Voorhees. All rights reserved. SwSizeV2_CountingRules.docx

2.3.3 Identifying Code-based Programming Language Software Attributes
Identifying code-based programming language software attributes is described in section 3.1.3 Counting
Code-based Software Attributes.

 Counting Rules for Software Size Measure v2 (SSMv2)

 Page 6 of 14

Last Updated July 10, 2012 Copyright 2009-2012. David P. Voorhees. All rights reserved. SwSizeV2_CountingRules.docx

3. Count Software Attributes
Once a software attribute has been identified within a software entity, it shall be counted.

3.1 Rules for Counting Software Attributes
Rules for counting software attributes are based on whether the knowledge is represented using
diagrams, text, and/or program code.

3.1.1 Counting Diagram-based Software Attributes
When a software entity instance is a diagram, attribute instances shall be measured (counted) as follows:

 When a notation (symbol) is not labeled (i.e., it is not a named attribute instance), each instance of
this unlabeled notation shall be counted.

 When a notation (symbol) is labeled (i.e., it is a named attribute instance), each instance of this
labeled notation shall be counted as follows:
o When a named attribute instance occurs more than once in one diagram, the duplicated

notation is counted only when the duplication adds knowledge to the diagram. When the
duplicated notation is done for purely aesthetic reasons (e.g., same data store appears twice on
a DFD to avoid crisscrossing of lines) then the duplication shall not be counted.

o When a named attribute instance occurs more than once within a collection of like-diagrams,
the duplicated notation is counted only when the duplication adds knowledge to the entity or
artifact. For example, a collection of sequence diagrams likely includes the same object on
many diagrams. This duplication adds new knowledge to the software entity and shall be
counted.

Appendix A contains tables that identify software modeling techniques that may be found within a
software entity. The table in this appendix identifies the rules for how to count a duplicate named
attribute instance.

Appendix B shows the notations associated with some of the modeling technique listed in Appendix A.

3.1.2 Counting Text-based Software Attributes
When a software artifact contains English text, each paragraph shall be counted based on the software
entity identification rules stated in section 2.2.2. When text is written as a list of bullets, then the
following shall be applied:

 When each bullet contains a single sentence or phrase, the entire list of bullets shall be counted as
one paragraph.

 When each bullet contains multiple sentences or phrases, each bullet shall be counted as one
paragraph.

For example, the two bullets in this section would be counted as one paragraph. The two sub-bullets in
the section 3.1.1 (which describe how to count named attribute instances) would be counted as two
paragraphs.

3.1.3 Counting Code-based Software Attributes
When a software entity is program code, each attribute is counted based on the specific programming
language being used.

 Counting Rules for Software Size Measure v2 (SSMv2)

 Page 7 of 14

Last Updated July 10, 2012 Copyright 2009-2012. David P. Voorhees. All rights reserved. SwSizeV2_CountingRules.docx

For all types of programming languages:

Entity Attribute Counting Rule

Files source Number of files containing program source code.

tag Number of files containing tag-based (e.g., html) source code.

Source code all statements Number of statements in the source code files. When a
programming language has a statement delimiter, this is used to
count the statements.

iteration Number of iteration statements in the source code files.

method/function calls Number of methods or functions invoked in the source code
files. Each method/function invocation is counted regardless of
how many times it is called.

selection Number of selection statements in the source code files.

Tag code all tags Number of tags in the source code files.

unique tag Number of unique tags in the source code files.

For object-oriented languages:

Entity Attribute Counting Rule

Method definition private Number of private method definitions in the source code files.

public Number of public method definitions in the source code files.

other Number of method definitions that are not private and not
public in the source code files.

Class definition private Number of private class definitions in the source code files.

public Number of public class definitions in the source code files.

other Number of class definitions that are not private and not public in
the source code files.

For imperative languages:

Entity Attribute Counting Rule

Function definition public Number of public function definitions in the source code files.

other Number of non-public function definitions in the source code
files.

 Counting Rules for Software Size Measure v2 (SSMv2)

 Page 8 of 14

Last Updated July 10, 2012 Copyright 2009-2012. David P. Voorhees. All rights reserved. SwSizeV2_CountingRules.docx

Appendix A – Modeling Technique Duplicate Counting Rules
The table below identifies modeling techniques that may be found in a software artifact or software
entity. Each modeling technique lists its software attributes and identifies how duplicate named
attribute instances shall be counted.

When a duplicate named attribute instance is found:

 On one diagram, the duplicate instances are counted either once or each duplicate instance is
counted.

 On a set of like-diagrams, the duplicate instances are counted either once or each duplicate
instance is counted.

Modeling Technique

Attribute

Duplicate Named Attribute Instances

One Diagram Set of Like-diagrams

Data flow diagram data flow each each

 data store once each

 external entity once once

 process (operation) once each

Data model diagram attribute each each

 entity once each

 relationship each each

Entity relationship diagram entity once each

 relationship each each

Event table action each each

 event once each

 state/condition/entity each each

Flowchart decision each each

 flow each each

 input/output each each

 processing each each

 subroutine call each each

 terminal each each

Nassi-Schneiderman chart iteration each each

 selection each each

 sequence each each

SADT activity diagram (ICOM) activity once each

 control each each

 input each each

 mechanism each each

 output each each

State transition diagram state once each

 state action once each

 transition each each

 transition action each each

 transition guard condition each each

State transition table action once each

 state once each

 transition (event) each each

Structure chart information flow each each

 invocation each each

 Counting Rules for Software Size Measure v2 (SSMv2)

 Page 9 of 14

Last Updated July 10, 2012 Copyright 2009-2012. David P. Voorhees. All rights reserved. SwSizeV2_CountingRules.docx

Modeling Technique

Attribute

Duplicate Named Attribute Instances

One Diagram Set of Like-diagrams

 predefined procedure once once

 procedure once each

Structure diagram (Jackson) connection each each

 iteration each each

 selection each each

 sequence each each

UML Class diagram aggregation each each
 association each each
 attribute each each

 class once each
 composition each each
 dependency each each
 generalization each each
 interface (abstract class) once each

 operation each each

 package once each
 realization each each

UML Collaboration diagram condition [in brackets] each each
 iteration * or for each each each
 message each each
 object once each
 return (assignment

op)
each each

UML Component diagram component once each
 dependency each each
 generalization each each
 non-OO component once each

 interface once each

UML Package diagram component once each
 dependency each each
 generalization each each
 non-OO component once each

 interface once each

UML Deployment diagram component once each
 dependency each each
 interface once each

 node once each

UML Object diagram object once each

 link each each

UML Package diagram dependency each each
 generalization each each
 package once each

UML Sequence diagram condition [in brackets] each each
 iteration * or for each each each
 message each each
 object once each
 return each each

 Counting Rules for Software Size Measure v2 (SSMv2)

 Page 10 of 14

Last Updated July 10, 2012 Copyright 2009-2012. David P. Voorhees. All rights reserved. SwSizeV2_CountingRules.docx

Modeling Technique

Attribute

Duplicate Named Attribute Instances

One Diagram Set of Like-diagrams

UML State machine (statechart) decision (branch/merge) each each
 signal/event (accept) once once
 signal/event (generate) once once
 signal/event (timer) once once
 state/activity once each
 state action each each
 synchronize (fork/join) each each
 transition each each
 transition action each each
 transition [guard condition] each each

UML Use case diagram actor once each

 use case once each
 association each each
 generalization Each each
 dependency Each each
 system boundary Each each

 Counting Rules for Software Size Measure v2 (SSMv2)

 Page 11 of 14

Last Updated July 10, 2012 Copyright 2009-2012. David P. Voorhees. All rights reserved. SwSizeV2_CountingRules.docx

Appendix B – Modeling Technique Notations
The tables below show the notations used for many of the modeling techniques listed in Appendix A. In
some cases, there is more than one popular notation for the modeling technique.

Data Flow Diagram
There are two popular notations for DFDs.

 data flow data store external entity process (operation)

Yourdon and Coad

Gane and Sarson

Data Model Diagram
The notation is similar to ERDs, except that attributes will be listed for each entity.

Entity Relationship Diagram
There are six popular notations for ERDs.

 entity relationship

Chen

IDEF1X

Bachman

Martin/IE/
Crow’s Foot

Min-Max/ISO

UML

Note that any cardinality rules expressed in the ERD are not counted.

Label Data store name External
entity
name

Label Data store name

External
entity
name

Entity name

Entity

name

Entity

name

Entity

name

<<entity>>

Entity

name

 Operation
name

 Operation
name

Relationship

name

Entity name

(1,1) Label

Label (0,N)

(1,1)

(0,N)

<<relationship>>
Label >
< Label

Label

Label

Label

Label

 Counting Rules for Software Size Measure v2 (SSMv2)

 Page 12 of 14

Last Updated July 10, 2012 Copyright 2009-2012. David P. Voorhees. All rights reserved. SwSizeV2_CountingRules.docx

Event Table
In the table below, s/c/e represents a state, condition, or entity.

 s/c/e/event 1 s/c/e/event 2 … s/c/e/event N

s/c/e 1 actions and/or state change

s/c/e 2 actions and/or state change X

… actions and/or state change

s/c/e M X

An “X” in a cell indicates that the state and condition combination is not possible.
An empty cell indicates that the state and condition results in no action and no state change.

Flowchart
decision flow input/output processing subroutine call terminal

Nassi-Schneiderman Chart
iteration (test after) iteration (test before) selection Sequence

SADT Activity Diagram (ICOM)

State Transition Diagram
 initial final no internal actions w/ internal actions

state

Each type of action specified in a state is counted as one action.

 no actions w/ action w/ action & guard condition

transition

Activity name Input Output

Control

Mechanism

 statement statement statement

loop condition

loop condition

question
yes no

State name

State name
entry/entry action
do/do action
exit/exit action

 question

Input event Input event/action Input event/action

[boolean expression]

 Counting Rules for Software Size Measure v2 (SSMv2)

 Page 13 of 14

Last Updated July 10, 2012 Copyright 2009-2012. David P. Voorhees. All rights reserved. SwSizeV2_CountingRules.docx

A [boolean expression] is counted as one guard condition regardless of the expression’s complexity.

State Transition Table
 event 1 event 2 … event N

state 1 actions and/or state change

state 2 actions and/or state change

… actions and/or state change

state M

An empty cell in the table above indicates that the state and event is either not possible or results in no
action and no state change.

 next-state 1 next-state 2 … next-state M

state 1 actions and/or event

state 2 actions and/or event

… actions and/or event

state M

An empty cell in the table above indicates that the state and next-state is either not possible or results in
no action and is not triggered by any event.

Structure Chart
information flow invocation predefined procedure procedure

Structure Diagram (Jackson)
connection iteration selection (option) sequence

Procedure

name

noun

phrase

Name

Predefined
procedure

name

Name

O

Name

*

 Counting Rules for Software Size Measure v2 (SSMv2)

 Page 14 of 14

Last Updated July 10, 2012 Copyright 2009-2012. David P. Voorhees. All rights reserved. SwSizeV2_CountingRules.docx

Appendix C - Document History
Date Description

05/19/2009 Original document.

01/19/2010 Added rules for identifying and counting program code.
Added notations to appendix A.
Reformatted document.

05/18/2010 Added information about software artifact types in section 2.1.
Modified rules for identifying and counting program code; to make it consistent with the source
code counting tool (CntSrc).

06/10/2012 Converted from OpenOffice Document to Microsoft Word 2007.
Made subtle wording changes to improve internal consistency of document.

Appendix D - References
[1] Voorhees, D.P., Mitropoulos, F.J. (2007). A Software Size Measure for Estimating Effort based on a
Software Development Life Cycle. Proceedings of the 2007 International Conference on Software
Engineering Theory and Practice, July 9-12, Orlando, Florida, USA.

