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General Comments 
Among the various changes in energy, 

those that are associated with the course of 
chemical processes have always been 
conspicuous because of their magnitude. 
Therefore, the application of classical 
thermodynamics to processes of this type has 
met with particular success. Nowadays, no 
intensive investigation of a chemical 
equilibrium is regarded as complete if it does 
not make use of the two main laws of heat 
theory.  

To be sure, a purely thermodynamic 
approach will never be entirely satisfactory, if 
only because the question of reaction velocity 
is entirely outside its field; and one will always 
have to make sure that, in addition to 
thermodynamics, the principles of atomistics 
are included. Atomistics has explained a 
number of processes in an entirely satisfactory 
manner, especially in the form of the kinetic 
theory of gases, as, for example, the work 
done by a gas in its expansion, or the transfer 
of heat through a gas. But if we ask about the 
accomplishments of atomistics in the 
mechanical explanation of chemical processes, 
we must admit openly that everything that has 
so far been attempted in this field has not only 
remained incomplete but must be considered 
basically faulty.  

Certainly the explanation of the law of 
constant and multiple proportions and the 
marvelous systematics, especially of organic 
compounds, are tremendous achievements of 
atomistics purely in the field of chemistry; but 
these applications are not of a mechanical 
nature and have hardly any relation to the 
manner in which two atoms combine in a 
compound, with the magnitude of the forces 
that enter in, and with the change in energy 
thus determined. Not only in chemical 
processes, but also in the probably simpler 

phenomena of steam formation, fusion, and the 
transformation of various modifications, the 
same gap exists.  

The principal fault in the ideas considered 
up to now seems to lie in the fact that, for 
example, in the consideration of steam 
formation, one simply calculated the work to 
be done in the dislocation of a molecule of 
liquid from the interior of the liquid phase into 
the gaseous space, using the theory of 
potentials. This formulation is questionable, 
however, because even a small change in the 
state of motion of the molecule can 
undoubtedly exert a great effect under certain 
conditions; but we do not know how this is to 
be taken into account—a fact which, of course, 
cannot justify the silent neglect that has 
generally been practiced up to now.  

Of no lesser significance is a second 
circumstance that plays a decisive role 
specifically in the chemical processes 
themselves, for, as Planck has shown, the laws 
of mechanics undergo a thorough 
transformation if one is dealing with the 
motion of atoms about their resting position. 
Here, also, we can only say at this time that the 
neglect of Planck’s quantum theory (or 
perhaps of any other, future theory which also 
leads to Planck’s radiation formula) had to 
place the stamp of incompleteness on all 
previous attempts at explaining chemical 
processes mechanically. Certainly, we do not 
know yet how the new views should be taken 
into account in this matter; nevertheless, we 
have made progress in being able to state with 
certainty now: Something mysterious is hidden 
within the laws of atom mechanics which is 
explained in part by radiation theory, in part 
by the more recent studies of specific heats, 
and which apparently must be thoroughly 
understood before a mechanical treatment of 
chemical processes will be possible. Thus, we 
know, for example, that the laws of motion of 
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a double star are quite different from those of a 
diatomic gas, and we can at least indicate 
broadly in what sense the laws of pure 
mechanics are modified in the second case.  

There is only one temperature point at 
which we can probably use the laws of 
mechanics safely; namely, when the motion of 
the atoms has completely stopped, i.e., at 
absolute zero temperature. Without doubt the 
laws of ordinary potential theory can be 
applied here; the heat formation that 
corresponds to the dislocation of the atoms 
from one state (e.g., in the form of free 
elements) to another state (e.g., in the form of 
a chemical combination) can be regarded as 
the equivalent of the forces exerted here; in 
other words, at absolute zero the chemical 
affinity must be equal to the heat formation.  

Now, the second heat law gives quite a 
general relation between the maximum work 
A, which we previously designated as the sum 
of all forces produced in the chemical process 
under consideration and to which we shall 
refer below, as usual, briefly as “chemical 
affinity,”2 and the heat developed, U: 

(1)  
Since we observed above that the left side 

of the equation disappears at absolute zero, we 
can write: 

  for T = 0. 
But, according to this equation, even at T = 

0, dA/dT (its negative value is also called 
“entropy”) can still possess a finite value and 
can even be infinitely large; it must, however, 
be of less than first order.  

Equation (1) contains the complete 
application of the two heat laws to chemical 
processes; as has been shown especially by 
Helmholtz, all that the older thermodynamics 
was able to teach can be demonstrated clearly 
by means of it. Therefore it will be useful to 
go into it a little more thoroughly.  

U can be looked up in thermochemical 
tables for room temperature, and we now want 
to refer to the well-known law that U can be 
calculated for arbitrary other temperatures 
from the specific heats.  

A can essentially be determined by two 
methods, both of which were already used by 
Helmholtz; namely, by measurement of the 
chemical equilibrium or of the electromotive 
force.  

Of course, dA/dT can then be found by 
measuring A at two slightly different 
temperatures.  

Historical Background  
Under such circumstances, the desire to 

derive A thermodynamically beyond equation 
(1) appeared quite early. The first determined 
effort in this direction came from Julius 
Thomsen, if one disregards Helmholtz’ 
method of calculating the electromotive force 
of galvanic elements, which will be discussed 
further below. Thomsen, in his “Contributions 
to a Thermochemical System,” emphasized 
repeatedly as early as 1852 that strong 
manifestations of chemical affinity are 
accompanied by intense heat formation and 
that chemical processes associated with heat 
absorption occur only rarely. He therefore 
arrived at the following conclusion:  

“When a body falls, it develops a certain 
mechanical effect that is proportionate to its 
weight and to the space traversed. In chemical 
processes that take place in the usual direction, 
a certain effect likewise appears; but it shows 
itself in this instance as heat formation. The 
heat formation constitutes a measure of the 
chemical force developed in the process.”  

We have seen above that a chemical 
process may not be regarded—at least not 
above absolute zero—as a phenomenon of 
attraction, comparable to the falling of a stone; 
but we shall not hold this against Thomsen, in 
view of the fact that attempts to use this 
interpretation are still being made repeatedly 
today in spite of the kinetic theory of heat. 

A –U =T dA
dT

lim T dA
dT
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Furthermore, Thomsen himself already 
recognized the untenability of the above 
concept in the early seventies, probably 
influenced chiefly by the results of his very 
ingenious method for determining the affinity 
between acids and bases.  

We know that the same law was 
formulated in 1869 by the second master of 
thermochemistry, Berthelot, and energetically 
defended by him for a long time. Berthelot’s 
formulation is the following:  

“Every chemical transformation which 
takes place without the interposition of a 
foreign energy aims toward the production of 
that substance or that system of substances 
which develops the most heat.”  

Both formulations—the older one by 
Thomsen, as well as the later one by Berthelot-
lead one to set A = U in formula (1) for all 
temperatures. It is unnecessary to give the 
reasons for the inadmissibility of this equation 
again in more detail, but a reference to a 
remark by Horstmann will be useful for further 
clarification. According to him, the proof of 
chemical equilibrium or, what amounts to the 
same thing, of a reversible reaction was 
sufficient for refuting Berthelot’s principle. 
Since the reaction takes place in one or the 
other sense, depending on the ratio of 
quantities of the reacting components, on one 
or the other side of the equilibrium, the 
reaction in the vicinity of chemical equilibrium 
must proceed in one instance according to 
Berthelot’s principle with heat formation and 
in the other, certainly in opposition to that 
principle, with heat absorption.  

We have emphasized above that the 
electromotive force of a galvanic element is 
proportional to the affinity of the process 
providing the current. The Thomsen-Berthelot 
principle, then, can also be expressed in such a 
way that the electromotive force of galvanic 
elements would have to be proportional to the 
heat formed per electrochemical gram element. 
It is of historical interest to emphasize that this 
formulation is found already in the famous 

paper by Helmholtz on the conservation of 
energy (1847). The method of calculation, 
which was only indicated there, was later 
carried out by William Thomson for several 
examples. More intensive study has shown, in 
agreement with our earlier observations, that 
one can indeed frequently calculate the 
electromotive force of galvanic elements very 
accurately from the heat formed, especially in 
cases where the affinity is strong, but that one 
may in no way speak of a strict law.  

It is evident that all further progress must 
be tied to equation (1); a relationship must be 
found that is independent of the special nature 
of the reaction under consideration, if the 
uncertainty inherent in equation (1) is to be 
overcome.  

For a certain class of reactions-namely, 
those where a gas is formed from one or more 
solid substances—Le Châtelier, Matignon, and 
Forcrand found the following approximate 
relationship: if Q designates the heat formed at 
constant pressure, and Tʹ, the absolute 
temperature at which the dissociation pressure 
of the gas being formed equals atmospheric 
pressure, then:  

 .  
In this case, disregarding the variation of Q 

with temperature, the second heat law gives  

 .  
We recognize immediately that Le Châtelier-
Matignon’s rule gives a value of 
approximately 32 for the undetermined 
integration constant multiplied by R. This rule 
is only approximately valid; nevertheless, it 
provides an important cue, and it probably 
deserved more attention than it was given 
formerly. We shall become acquainted with a 
more precise formulation later on.  

Van’t Hoff set up an equation in 1904 that 
was hardly satisfactory. If one wants to satisfy 
the effect of temperature on U by the 
(seemingly!) simplest equation:  

Q
ʹT
= approx. 32

ln p = − Q
RT

+ const
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(2) U = U0 + a T,  
integrating (1) gives 
(3) A = U0 + aT + a T ln T, 
where a is the constant of integration. Van’t 
Hoff assumed that a was small. This 
hypothesis is not only arbitrary but also 
evidently inaccurate. For, even if we assume 
the case that a equals zero, we only need to 
alter the temperature scale—i.e., divide the 
space between the melting and boiling points 
of water into a million instead of a hundred 
parts—and we immediately have a finite and 
even sizable value for a. It is hardly likely that 
the natural laws are guided by the fact that 
Celsius divided the above-mentioned 
temperature interval into a hundred parts and 
that he happened to choose water as the 
standard substance.  

The earlier attempts to go beyond equation 
(1) thus were unsuccessful; but at least the 
problem had been sharply formulated. The 
clearest position taken, next to Helmholtz, was 
probably that of Le Châtelier as early as in 
1888. I want to reproduce his words here:3 

“It is very probable that the integration 
constant, like the other coefficients of the 
differential equation, is a definite function of 
certain physical properties of the reacting 
substances. The determination of the nature of 
the function would lead to complete 
knowledge of the laws of equilibrium. 
Independently of new experimental data, it 
would determine a priori the complete 
equilibrium conditions which correspond to a 
given chemical reaction; up to now, it has not 
been possible to determine the exact nature of 
this constant.”  

If I may now discuss my part in the 
solution of the problem, it seemed noteworthy 
to me from the beginning that, for an 
erroneous law of nature, Berthelot’s rule still is 
too frequently applicable to be ignored 
entirely, and therefore I had already 
emphasized in the first edition of my textbook 
of theoretical chemistry (1893) “that it is quite 
possible that Berthelot’s principle, in a clearer 

form, may at some time again become 
important.” It was particularly noticeable that 
for solid substances, affinity and heat 
formation frequently coincide. It was clear 
from the beginning, on the other hand, that the 
identification of these two magnitudes actually 
becomes meaningless for gaseous systems, for 
the maximum work depends on the initial and 
final concentrations of the reacting gases, 
while the heat formation is entirely 
independent of these. Thus, the question arose 
whether a relationship between heat formation 
and chemical equilibrium could be found 
empirically, at least for comparable reactions 
such as:  
 Cl2 + H2 = 2HCl  
 2NO = N2 + O2 
or:  
 2H2 + O2 = 2H2O 
 2CO + O2 = 2CO2  
 3O2 = 2O3 .  

Therefore, together with a large number of 
collaborators, and guided by such 
considerations, about ten years ago I 
undertook the determination of equilibriums in 
gases, on which only very little, and usually 
uncertain, observed material was previously 
available.  

Thermodynamic Considerations  
In its application to gaseous systems, the 

second heat law leads to the following result. 
Experience teaches us that the specific heats 
vary only slowly with temperature, so that it is 
suitable and convenient, to begin with, to 
assume an expression of the form  
(4) c = c0 + aT + bT2 + ...  
to be valid; c0 would thus be the specific heat 
at very low temperatures.  

Furthermore, since, according to a law by 
Kirchhoff, the temperature dependence of the 
heat of reaction U is determined by the 
specific heats of the substances participating in 
the reaction, we can also set 
(5) U = U0 + aT + bT2 + gT3 + ... , 
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where U0 is the heat of reaction near absolute 
zero. 

Substituting in the equation of the reaction 
isochore  

(6)  
and integrating, we easily find 

(7)  
where I is the constant of integration.  

The right-hand side of equation (7) thus 
contains, besides the constant of integration, 
only pure thermal magnitudes (heat of 
reaction, specific heat, or, respectively, its 
temperature coefficients); but the second heat 
law says nothing at all about the integration 
constant itself.  

At very low temperatures, the effect of all 
other members disappears, and we obtain 
  RT ln K = –U0, 
i.e., we can here calculate the equilibrium from 
the heat of reaction U0; at finite temperatures, 
however, first the effect of aT ln T and RTI, 
and then also that of the remaining members 
will be noticeable.  

From the experimental point of view, we 
arrive at the problem that the behavior of gases 
cannot be measured at lower temperatures 
because they cease to remain capable of 
existing in significant concentrations.  

If we now consider the opposite of gaseous 
equilibrium namely, a reaction between solid 
substances only—a limiting transition to 
absolute zero seems entirely possible in 
theoretical as well as experimental respects. 
And here it is noticeable that Berthelot’s 
principle frequently fits quite well, especially 
if one is dealing with relatively great reaction 
heats. Thus, the conjecture forced itself upon 
me (1906) that this is a matter of a limiting law 
of such a kind that A and U not only become 
equal at absolute zero but approach each other 
asymptotically. Thus we should have:  

(8)  (for T = 0); 
but it is to be noted that the above equation is 
applicable, to begin with, only to pure solid or 
liquid substances; at absolute zero, gases stop 
being capable of existing, and the behavior of 
solutions must still be investigated more 
closely.  

We recognize further that equation (8) 
combined with (1) gives  

 ,  (for T = 0). 
The relationship  

  (for T = 0) 
teaches us that the atomic heats of the 
elements and compounds must be strictly 
additive at low temperatures; already in the 
first practical applications of my theorem I 
was led to the conjecture that all of them must 
converge toward very small values at low 
temperatures. The experimental and theoretical 
studies of recent times have, as we know, not 
only confirmed this conjecture but even made 
it into a certainty that the specific heats of all 
solid substances converge toward zero at low 
temperatures.  

We shall make use of this below, and we 
shall find the following equation to be strictly 
valid for low temperatures, if we include the 
very important result that was confirmed 
theoretically by Debye and experimentally by 
Eucken and, quite recently, also by Schwers 
and myself, that the specific heat changes in 
proportion to the third power of the absolute 
temperature at low temperatures: 

(14) U = U0 + δT4, .  
In the discussion of the following 

examples, we shall limit ourselves to a graphic 
representation, and I shall give references to 
the appropriate publications for the specific 
numerical material. It is even quite possible 
and, in many cases, practicable, to determine 

U = RT 2 d lnK
dT

lnK = −
U0
RT

+
α
R
lnT + β

R
T + γ

2R
T 2 + ...+ I

lim dA
dT

= lim dU
dT

lim dA
dT

= 0 lim dU
dT

= 0

lim dU
dT

= 0

A =U0 −
δ
3
T 4
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the relationship between affinity and heat of 
reaction by purely graphic means.  

We shall assume, for example, that the 
heat of reaction was measured for a single 
arbitrary temperature and that we know the 
specific heats of the reacting solid substances 
down to very low temperatures. By assuming 
the T3 law for the very low temperatures that 
are inaccessible to measurement, we are then 
in a position to draw the heat of reaction as a 
function of temperature with great accuracy 
down to absolute zero.  

The integral of the equation  

(1)  
is 

(15) ; 
for T = 0, we have 
  A = U0; 
i.e., as was already mentioned, Berthelot’s law 
is valid here without restriction. However, for 
higher temperatures the value of the 
integration constant c becomes decisive, and 
the second heat law leaves this value 
undetermined.  

 

Figure 1 shows this. The solid curve U 
represents the dependence of the heat formed 
on the absolute temperature; thus U0 is the 
value this quantity assumes at absolute zero; 
then each of the dotted curves A is a solution 
of the above equation, and one sees at once 
that there is no point, and therefore no value 
for A, through which we could not draw an A 

curve out of the entire set of curves. In other 
words, every arbitrary value of the affinity A is 
compatible with any experimentally given 
shape of the heat formation, so that the second 
heat law abandons us here to a large extent. It 
gives us a precise answer only for absolute 
zero, since the curves for heat formation and 
affinity intersect here so that both quantities 
become identical, as Berthelot had assumed to 
be the case for all temperatures.  

But if we now include the new heat law, 
the A curve must run parallel to the U curve at 
absolute zero; in other words, from the infinite 
set of A curves one, and only one, is fixed as 
being possible.  

If we wish to determine it, not by 
calculation from equation (15), in which c 
must be set equal to zero according to the new 
law, but by purely graphic means, we must 
first, starting at absolute zero, draw it parallel 
to the U curve; the further direction is given at 
every point by the equation  

 . 
With some practice, the A curve can be drawn 
quickly and with sufficient accuracy in this 
way.  

 

Examples of Condensed Systems  
In condensed systems, also, Berthelot’s 

principle sometimes fails completely; in 
particular, at the melting point and at the 
transformation point the affinity equals zero 
because the two phases in question are here in 
equilibrium, while the heat formed (heat of 

A –U =T dA
dT

A = −T U
T 2

dT
0
T∫ + cT

tanα = dA
dT

=
A−U
T
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fusion or, respectively, heat of transformation) 
can even have considerable values. The 
application of the new heat law thus leads in 
this instance to especially characteristic 
consequences, the influence of the specific 
heats, which had formerly not been 
sufficiently recognized, proving decisive for 
the position of the melting or transformation 
point. As an example, let us look at the 
transformation of sulphur.  
Transformation of Sulphur 

Different authors have measured the heat 
of transformation of rhombic into 
monosymmetric sulphur, the maximum work 
to be obtained in this and the specific heats for 
both modifications; in addition, the 
temperature of the transformation point is 
known exactly.4 It turned out that, with the aid 
of the simple formulas  
 U = 1.57 + 1.15.10–5T2 
 A = 1.57 – 1.15.10–5T2, 
all observations can be reproduced almost 
within the accuracy of the errors of 
observation. 

 

The accompanying curve (Figure 3) gives 
a picture that approaches reality still more 
closely; here, the U curve is drawn from the 
available thermal measurements and the A 
curve is determined graphically as described 
above. The latter is in agreement with the 
available measurements to the extent allowed 
by the accuracy of the available thermal 
measurements; since the very small difference 
of the specific heats of the two modifications 
of sulphur determines the course of the U 
curve, it can, of course, be indicated only 
within a certain accuracy. But it can probably 

be considered definite, and it is this alone that 
we are concerned with, that the two curves are 
tangent to each other, in agreement with the 
new heat law.  
Combination of Water of Crystallization 

In recent times,5 the reaction  
 CuSO4 + H2O = CuSO4,H2O 
has been investigated very intensively. The 
quantities measured were the heat of hydration 
with liquid water, the dissociation potentials at 
higher temperatures, and the specific heats of 
the two salts and of ice down to very low 
temperatures (Figure 4).  

 

With the aid of the second heat law, it was 
then possible to calculate the dissociation 
potential p also for the ordinary zero 
temperature point; if p is the vapor pressure of 
ice at this temperature, it is found that 

 . 
On the other hand, with the aid of the new heat 
law, using the heat formed in this reaction at 
the same temperature (4,910 cal) and using the 
specific heats, the result was:  
 A = 4,475 cal,  
in satisfactory agreement with the value above. 
Finally, for absolute zero, it was calculated 
that  

A = RT ln p
π
= 4,415 cal
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 A0 = U0 = 4,680 cal,  
and it can be seen (as seems to be most 
frequently the case) that U increases with 
temperature while A decreases; but the latter 
quantity would cross the temperature axis only 
at such high temperatures that the ice would 
have long ceased to exist and that, in practice, 
a point of transformation is therefore not 
present.  

Such a process will always occur if the 
molecular heat of the water of crystallization is 
smaller than that of ice; potassium 
ferrocyanide, which crystallizes with three 
moles of water, is an example of the reverse 
case. The accompanying diagram (Figure 5)6 
shows the energy relationships, which are very 
peculiar here; one sees that U becomes 0 at T = 
160, and that U becomes negative at higher 
temperatures, while A remains positive and 
even increases.  

 

1[Copied from Eduard Farber, Ed., Milestones 
of Modern Chemistry, Basic Books, New 
York, 1966, pp 186-202. Translation by 
Elisabeth F. Lanzl. —CJG] 

2Undoubtedly it is more practical to define 
chemical affinity by the so called 
“thermodynamic potential,” but in our 
considerations this does not make any 
noticeable difference. 

Thus, we may probably say in summary 
that it has been possible to test the new heat 
law on a very extensive and varied group of 
facts, numerous chemical equilibriums having 
been calculated from thermal data or from the 
combination of thermal data and vapor-
pressure measurements.  

Independent of this, it may also be derived, 
as I was unable to do in detail here, from a fact 
established by very many measurements done 
in recent times according to which the specific 
heats of solid and liquid substances assume 
vanishingly small values at very low 
temperatures.  

Third, as Mr. Planck recently explained 
here, it is closely related to the theory of 
energy quanta, and thus even the phenomena 
of heat radiation, strange as this may sound at 
first, give support to our law from an entirely 
different direction.  

 

3Les équilibres chimiques (Paris, 1888), p. 184. 
4For details cf. Nernst, Theoretische Chemie, 7. 

Aufl. (1913), pp. 736-737. 
5A. Siggel, Zeitschrift für Elektrochemie, Vol. 

19 (1913), p. 341. 
6Schottky, Zeitschrift für physikalische 

Chemie, Vol. 64 (1908), p. 441; W. Nernst, 
Berichte der Berliner Akademie (1910), p. 
277. 

 


