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ABSTRACT
Traditional recommendation systems make recommendations
based solely on the customer’s past purchases, product rat-
ings and demographic data without considering the prof-
itability of the items being recommended. In this work we
consider the question of how a vendor can directly incorpo-
rate the profitability of items into its recommendation sys-
tem so as to maximize expected profit while still providing
accurate recommendations. Our approach uses the output of
any traditional recommender system and adjusts it accord-
ing to item profitability. Our approach is parametrized so
the vendor can control the amount of deviation between the
recommendation incorporating profits and the traditional
recommendation. We study our approach under two set-
tings and show that it can achieve significantly more profit
than traditional recommendations.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Information storage and re-
trieval—Online-information services, Commerical services

Keywords
Recommender systems, Product profitability, Algorithms,
Electronic commerce.

1. INTRODUCTION
Recommendation Systems are important tools for major

companies such as Amazon, Netflix and Pandora. Recom-
mendation Systems use a customer’s demographic data, past
purchases and past product ratings to predict how the cus-
tomer will rate new products [1, 11, 9, 13]. They have
been shown to help customers become aware of new prod-
ucts, increase sales and encourage customers to return to
the business for future purchases [6, 15]. Designing recom-
mendation systems that accurately predict customer ratings
has generated much research and interest both in the aca-
demic and business communities. The Netflix prize was a
manifestation of this interest [12]. However, the majority of
the work on recommender systems has not explicitly consid-
ered how the profitability of products could be incorporated
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into the recommendations. An article published in Knowl-
edge@Wharton claims that the actual Netflix recommen-
dation system modifies its ratings to encourage consumers
to order the more obscure movies which are presumably
cheaper for Netflix to supply than major blockbusters[18].
While Netflix does not, publicly reveal whether it uses such
methods, it seems natural for a business to incorporate the
profitability of products into its recommendations. From
the viewpoint of the customer, recommendations are help-
ful suggestions, but from the viewpoint of the vendor they
are extremely targeted advertisements, and the explicit goal
of advertising is to increase profit.

In this paper, we study the question of how a vendor might
incorporate the profitability of items into its recommenda-
tions. A naive approach is to give the most profitable items
the highest recommendations. Then these items would pre-
sumably be bought more often and the business would make
more money. However this tactic has some obvious flaws.
While the customer may initially follow the vendor’s recom-
mendation, she may find that she does not like the items as
much as the vendor predicted. After only a few such experi-
ences, she would realize that the vendor’s recommendations
do not accurately reflect her tastes. In the best case for the
vendor, the customer would ignore the vendor’s recommen-
dations and continue her natural purchasing behavior while
in the worst case she would lose trust not only in the ven-
dor’s recommendations but also in the vendor as a whole
and take her business elsewhere. Thus incorporating the
profitability of items into recommendations must be done
carefully so that customer’s trust is not compromised.

A reasonable assumption is that as long as the vendor con-
sistently presents recommendations that are similar enough
to the customer’s own ratings, the customer will maintain a
high level of trust in the accuracy of the vendor’s recommen-
dations. For this reason, we use an established similarity
measure as a measure of trust. We assume that the vendor
has access to a vector ~c giving the consumer’s true ratings
for items. The vendor’s objective is to present a recommen-
dation vector ~r to the customer which is within a certain
threshold of similarity to ~c, and maximizes the vendor’s ex-
pected profit (by incorporating the profitability of items into
the recommendation). Section 2 gives details of the model.

One question that might arise is how the vendor can de-
termine the customer’s true ratings (i.e ~c ) if the ratings are
for products that the consumer has not yet rated herself.
There is a large amount of research and activity in develop-
ing highly accurate recommendation systems that solve this
problem and we assume the predictions from these systems



for well established customers are good approximations to
the customer’s true ratings.

The idea that the customer will maintain high trust as
long as the vendor’s recommendations are similar to her
own ratings has empirical support. Hill et al. showed that
users asked to rate the same item at different times supply
different ratings [8]. Amatriain et al. report similar find-
ings in their study which evaluates noise in user ratings of
movies [2]. Thus there is some natural variability in the rat-
ings that users supply, and so slight differences between the
predicted ratings and the actual customer ratings should be
insignificant to the customer.

Chen et al. also considered using the profitability of items
in recommender systems [5], but they do not explicitly re-
quire a level of accuracy in their system.

The outline of our paper is: section 2 defines our model
and problem, section 3 describes the similarity measure and
gives justification for its use as a measure of customer trust
and section 4 describes our approach for maximizing ex-
pected profit in different scenarios.

2. MODEL
Let n be the number of items being sold by the vendor.

Let ~c and ~r be the vectors of length n where the ith compo-
nents denoted ciand ri gives a rating for item i. All items
are rated using numbers between zero and some maximum
rating m.

We focus on the scenario where the vendor is interacting
with an established customer who the vendor would like to
continue to do business with in the long term. We assume
the vendor uses a recommendation system which makes good
predictions about how such a customer rates items and that
vector ~c gives these predictions 1. The vendor presents the
customer with recommendation vector ~r to help her decide
which item to purchase. In many real applications, the ven-
dor only wants to provide the customer with the top n rec-
ommended items. In this case the vendor would display the
n highest rated items in ~r.

The customer has a certain level of trust in the accuracy
of the vendor’s recommendation which she has developed
from experience with the vendor’s past recommendations.
When choosing an item to purchase, the customer considers
~r based on how much trust she has in the vendor’s recom-
mendations. The exact influence that a customer’s level of
trust in the vendor’s recommendations has on her purchas-
ing behavior is too complex to model precisely. We make
the following simplifying assumptions to allow for a model of
that behavior: First we assume that the consumer’s trust is
closely tied to how similar the vendor’s recommendations are
to the ratings she would give items. Second we assume that
as long the similarity constraint is consistently met by the
vendor, the consumer will use the recommendations when
deciding what items to purchase. Specifically we assume
there is a function T (~r) that assigns a scalar value to the
notion of similarity between ~r and ~c where higher values in-
dicate greater similarity. Second, we assume that if for every
~r that the vendor presents to the customer, T (~r) meets or
exceeds some threshold value τ , then the customer’s trust
in the recommendation system will remain at a constant,
significantly high level. Finally, we assume that if the cus-

1The customer does not necessarily know all the entries of
~c herself as she has not purchased all items.

tomer’s trust remains at this level, her purchasing decision
will be solely a function of ~r. The customer’s level of trust
and her subsequent purchasing behavior is unknown if the
vendor presents ~r such that T (~r) < τ .

The intuition behind these assumptions is that, as long
as the vendor recommendation consistently predicts ratings
that are similar enough to how the customer would rate the
items, the customer will maintain a certain level of trust in
the accuracy of the recommendation system. As a result,
she will use the vendor’s recommendation as information
when deciding which items to purchase. However if ~r is too
far from ~c, the customer loses trust the vendor’s recommen-
dations and no longer considers them when deciding which
item to buy. In that case, her purchasing behavior is unclear.

The vendor’s main goal is to maximize profit. However,
to maintain customer trust he is required to present vector
~r such that T (~r) ≥ τ for some constant τ . Denote ~ϕ(~r)
be a vector valued function whose ith component gives the
probability that the customer will purchase item i at a given
time step. The customer, at any step, can purchase zero or
more items, so the components of ~ϕ(~r) need not sum to one.
Let ~p be the profit vector whose ith component, pi, gives
the profit received when item i is purchased. The vendor’s
expected profit is given by Ep = ~p · ~ϕ(~r). Formally our
problem is to maximize the vendor’s expected profit while
maintaining a level τ of trust with the customer:

Max ~p · ~ϕ(~r) s.t. T (~r) ≥ τ (1)

3. SIMILARITY MEASURES FOR TRUST
In this section we argue that the Dice coefficient, which

measures similarity between two vectors, is an appropriate
measure of consumer trust. We briefly discuss why some of
the other common singularity measures are lacking.
Dice coefficient. We adopt the Dice coefficient given in
equation 2, to measure trust T (~r). The Dice coefficient is a
popular measure which has previously been used to measure
recommendation accuracy [5, 7, 14].

Dice(~r) =
2
P
i ciriP

i c
2
i +

P
i r

2
i

=
2~c · ~r

||~c||2 + ||~r||2 (2)

Above ||~x|| =
pP

i x
2
i denotes the length of vector x. Nor-

mally the Dice coefficient is denoted as a function of the
two vectors whose similarity is being measured but here we
denote it as only a function of ~r to emphasize the fact that
~c is constant known to the vendor. Let θ denote the an-
gle between ~c and ~r. An equivalent definition of the Dice
coefficient is,

Dice(~r) = cos(θ) · 2||~c||||~r||
||~c||2 + ||~r||2 (3)

We now list some properties of the Dice coefficient that
makes it a reasonable function to measure trust.

Property 3.1. Dice(~r) is always between zero and one.
Dice(~r) = 1, if and only if ~c = ~r for every item i. Dice(~r) =
0, if and only if ri = 0 on all items i such that ci > 0.

Thus the Dice(~r) is one only when ~r is in complete agree-
ment with ~c, and it is zero only when ~r disagrees with ~c on
all relevant items.

Proof. (Proof of Property 3.1)



Dice(~r) ≥ 0 because no item is rated less than zero. Thus
the numerator of Equation 2 is always positive. Now sup-
pose that Dice(~r) > 1. By Equation 2, this implies that
0 >

P
i c

2
i − 2rici + r2i =

P
i(ri − ci)

2 which is a contradic-
tion. Thus Dice(~r) ≤ 1.

Suppose that ri = ci for every i. Then using Equation 2
Dice(~r) = 1. To prove the other direction suppose that
Dice(~r) = 1. The formulation of the Dice coefficient given
in Equation 3 can be used to show that ri = ci for all i.
Note that 0 ≤ cos(θ) ≤ 1 as no item is rated less than
zero. The second term of Equation 3 is non-negative by
definition and the following proof by contradiction shows
it is at most 1: suppose 2||~c||||~r||/(||~c||2 + ||~r||2) > 1 then
2||~c||||~r|| > ||~c||2 + ||~r||2 implying that 0 > (||~c|| − ||~r||)2
which is false. Thus if Dice(~r) = 1 both terms of Equation
3 must be 1. As cos(θ) = 1 the angle between ~c and ~r is zero
and the second term being 1 implies that (||~c||−||~r||) = 0 i.e
that ~r and ~c have equal length. Together this implies that
ri = ci for all i.

Finally note that when Dice(~r) = 0, the numerator of Equa-
tion 2 is zero which implies that ri must be zero for each i
such that ci > 0.

Jaccard measure. The Jaccard similarity measure, given
below, behaves similarly to the Dice coefficient and is used
widely in information retrieval and data mining [17, 10, 3].

Jac(~r) = (~c · ~r)/(||~c||2 + ||r||2 − ~c · ~r)

It is another appropriate measure of consumer trust and all
results extend to the setting where T (~r) = Jac(~r).

Cosine measure. The cosine similarity measure, given in
equation 4, is equal to the cosine of θ. It is always between
zero and one as no item is rated less than zero.

Cos(~r) = cos(θ) =

P
i ciripP
i r
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i c
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(4)

The cosine measure is not influenced by difference in the
lengths of ~r and ~c and this is the main reason it seems un-
suitable for measuring trust as demonstrated in the following
example.
Example. Suppose the items are rated between 0 and 5.
Consider a picky customer who rates all items somewhat
low and a vendor that recommends all items high, i.e ci = 1
and ri = 5 for all i. The cosine measure will be to one
because θ = 0 indicating that the picky customer has high
trust for the vendor’s recommendation, which is surely not
the case.

Mean squared error and distance measures. The
mean squared error (MSE) measures the average dissimilar-
ity between ~r and ~c. Let m denote the maximum possible
rating. To measure similarity we could use 1-MSE, Equation
5, which is always between zero and one.

MSE(~r) =

P
i((ci/m− ri/m))2

n
(5)

The 1-MSE measure gives equal credit for agreements on
items the customer dislikes as on agreements on items she
prefers and this makes it unsuitable for measuring the trust
as demonstrated by the example below. This example also
applies to other distance based similarity measures such as
Euclidean distance and Manhattan distance.

Example. Suppose the items are rated between 0 and 5. Let
~c = [5, 5, 5, 1, 1, 1, . . . , 1] which represents a customer who
rates a few items very highly but dislikes most items. Con-
sider the following recommendation ~r = [1, 1, 1, . . . , 1, 5, 5, 5]
where the vendor gives the highest ratings to a few items
that the customer dislikes and gives the low ratings to all
other items including the items the customer prefers. MSE
is Θ(1/n) so that 1-MSE approaches 1 as the number of
items n gets large indicating that the customer would have
high trust such recommendations which is not the case.

4. PROFIT MAXIMIZATION
Using the Dice similarity coefficient defined in Section 3

as the trust function the vendor’s optimization problem is,

Max Ep(~r) = ~p · ~ϕ(~r) s.t. Dice(~r) =
2
P
i ci · riP

i c
2
i +

P
i r

2
i

≥ τ

(6)
We outline a general approach for solving Equation 6 and
then apply our technique on two different objective functions

obtained by alternative definitions of ~φ(~r). We analyze how
much profit the vendor gains by presenting the customer
with recommendation ~r rather than ~c.

4.1 General Approach
Calculus gives us a general approach for solving the ven-

dor’s maximization problem stated in Equation 1. Adding
1/τ to both sides of the Dice constraint above and simplify-
ing reveals that it is equivalent to,X

i

“
ri −

ci
τ

”2

≤
„

1

τ2
− 1

«X
i

c2i (7)

As ~c is a constant for our setting, the feasible ~r for our
problem lie in a region enclosed by an n-sphere with radiusq

( 1
τ2 − 1)

P
i c

2
i which we refer to as the Dice sphere.

The general approach to solving maximization problem of
Equation 6 involves two parts. The first is to determine if
there are any local maxima that lie strictly inside the Dice
sphere i.e. which satisfy Dice(~r,~c) > τ . The second part is
to find the vector ~r that maximizes expected profit over all
vectors on the surface of the Dice sphere, i.e. which satisfy
Dice(~r,~c) = τ . The largest of the local maxima in the sphere
and the maximum on the surface is the global maximum.

The gradient of the objective function is zero at each lo-
cal maximum inside the Dice sphere. Thus all solutions to
∇Ep = 0 are candidate vectors. Let ~r1, ~r2, ..., ~rk be the list
of all vectors that satisfy this property. While these vectors
could be local minima or saddle points instead of local max-
ima, it is not necessary to distinguish between them. It is
only necessary to find the greatest value of Ep(~ri) for all i
and compare it to the maximum of all vectors on the surface
of the sphere. Let ~rin denote the maxima vector inside the
Dice sphere.

The maximum vector on the surface of the Dice sphere
can be found using the method of Lagrange multipliers.
The maximum valued vector ~rs will satisfy ∇Dice(~rs,~c) =
λ∇Ep(~rs) and Dice(~rs,~c) = τ . The maximum of ~rs and ~rin
is the solution to the optimization problem [4, 16].

4.2 Simple probability function
Consider a scenario where the customer can purchase zero

or more items at each time step where the probability that



the customer purchases item i is independent of the vendor’s
ratings for other items. Here is a simple way to define the
probability function which satisfies this assumption,

~ϕ(~r) =
“r1
m
,
r2
m
, . . . ,

rn
m

”
(8)

Recall that m is the highest possible rating for an item.
With this definition of ~ϕ, the probability that a customer
purchases an item is linearly proportional to the vendor’s
rating of that item and the vendor’s expected profit is

Ep(~r) = ~p · ~ϕ(~r) =
1

m

X
i

pi · ri (9)

As prices are all greater than zero, ∇Ep = ( p1
m
, ..., pn

m
) 6= 0

so there are no local maxima inside the sphere. Thus we
can proceed to finding the maximum be on the surface of
the Dice sphere. Using Equation 7 we have ∇Dice(~r,~c) =`
2(r1 − c1

τ
), ..., 2(rn − cn

τ
)
´
, so the maxima on the Dice sphere

surface must satisfy the following system of equations,

pi
m

= 2λ(ri − ci/τ) for all i

and
P
i(ri − ci/τ)2 =

`
1
τ2 − 1

´P
i c

2
i

where the last equation requires ~r to lie within the Dice
sphere. Solving the first set of equations we obtain that

ri =
pi

2mλ
+
ci
τ

(10)

Substituting in the value of ri into Equation 7 we get λ =

1
2m

r P
i p

2
i

( 1
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−1)

P
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i

. The final solution is obtained by plugging

λ into Equation 10.

ri = pi

s
( 1
τ2 − 1)

P
j c

2
jP

j p
2
j

+
ci
τ

(11)

Profit Gains. By presenting the customer with recommen-
dation ~r derived in Equation 11 the vendor earns expected

profit Ep(~r) = 1
m

“P
i p

2
i

q
(1/τ2 − 1)

P
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2
j + pici/τ

”
,

which is simplified via the Cauchy-Schwarz inequality to 2,

Ep(~r) ≥

 r
1

τ2
− 1 +

1

τ

! P
i pici

m
. (12)

The expected profit from ~c is Ep(~c) = (
P
i pici)/m. The

vendor’s profit gain from presenting ~r rather than ~c is,

Ep(~r)− Ep(~c)
Ep(~c)

=

r
1

τ2
− 1 +

1

τ
− 1 ≥ 2(1/τ − 1).

Example. If the vendor presents recommendation vectors
that are within similarity threshold τ = .9, allowing a 10%
deviation to ~c, then in expectation he earns at least 2(10/9−
1) > 22% more profit by presenting ~r rather than ~c.

4.3 Simple distribution
Now we consider the scenario where at each time step the

customer purchases only one item but chooses which item
to purchase based on how its rating compares to ratings
of other items. A simple way to model this is to set the

2The Cauchy-Schwarz inequality is
P
i p
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P
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(
P
i pici)

2

purchase probability of item i to be ri/
P
j rj .

~ϕ(~r) =

„
r1P
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Thus the customer scales each item by the sum of the ven-
dor’s ratings, and then chooses uniformly among all offered
items. With this definition of ~ϕ the expected profit is,

Ep(~r) = ~p · ~ϕ(~r) =
X
i

pi · riP
j rj

(13)

The local maxima inside the Dice sphere occur where the
gradient of the expected profit is zero. The gradient is

∇Ep =

*
p1

P
j rj − r1p1“P
j rj
”2 , . . . ,

pn
P
j rj − rn · pn“P

j rj
”2

+

For ∇Ep = 0, it must be the case that
P
j rj = ri for all

i. Thus if there are at least two items with different ratings
then there are no local maxima inside the Dice sphere.

We proceed to finding local maxima on the surface of the
Dice sphere. Applying the method of Lagrange Multipliers
as before we end up having to solve the following system of
equations for variables λ and ri for all i:

pi
P
j rj − ri · pi“P
j rj
”2 = 2λ(ri −

ci
τ

) for all i and Dice(~r) ≥ τ (14)

Unfortunately we do not know how to find a solution for
this as the first set of equations involves ri for all i. Recall
that in section 4.2 the corresponding equations for finding
the maxima on the Dice surface were each a function of
only one ri. This lead us to seek an alternative approach.
We will reduce solving the optimization problem under the
definition of Ep given in Equation 13 to solving a series of
simpler optimization problems on which we can effortlessly
apply the method of Lagrange Multiplier. To do so, first
consider the decision version of our problem: Does there
exist a ~r such that Ep(~r) ≥ V and Dice(~r) ≥ τ?

Under Equation 13, having Ep(~r) ≥ V is equivalent to
having

P
i(pi − V )ri ≥ 0. Thus the decision version of our

problem is equivalent to solving the following maximization
problem and checking that its solution has ri ≥ 0 for all i,

Max Ep(~r) =
X
i

(pi − V )ri s.t. Dice(~r) ≥ τ (15)

Equation 15 can be solved using the general approach out-
lined in Section 4.1. The gradient ∇Ep(~r) = 0 iff pi−V = 0
for all i. Thus as long some item is not priced V , there are
no local maxima for Equation 15 inside the Dice sphere 3.

To find the maxima on the surface of the sphere, we solve
the following system of equations,

pi−V = 2λ(ri−ci/τ) for all i and Dice(~r) ≥ τ (16)

Note that Equation 16 differ from Equation 10 only by con-
stants so the solution derived in Section 4.2 shifted by con-
stants is a solution for Equation 16. We get that,

ri =
pi − V

2λ
+
ci
τ

where λ =
1

2

s P
i(pi − V )2

(1/τ2 − 1)
P
i c

2
i

3If all item are priced V , all ~r yield expected profit V and
we could pick any ~r which lies inside the Dice sphere.



If for all i, ri ≥ 0, we return a “yes” for the solution of the
decision problem and otherwise we return “no”.

To find an a solution for the original optimization prob-
lem which is arbitrarily close to optimal, we can do bi-
nary search along a bounded interval of possible values of
Ep, checking the existences of solutions using decision ver-
sion algorithm described above. Let Vmax = maxi pi. The
initial binary search interval can be set to [0, Vmax] since
Ep(~r) ≤ Vmax as the customer purchases one item per time
step. Each binary search step reduces the search interval
by half and doing more and more binary search steps brings
us closer and closer to the optimal solution for the opti-
mization problem. Let δ < 1. A solution which is within
distance Vmaxδ of the optimal can be found by performing
log(Vmax

δ
) binary search steps. For example, let ~r? denote

the optimal solution. With δ = 1/Vmax, we can obtain an
approximate solution ~ra such that Ep(~ra) + 1 ≥ Ep(~r?) in
log(Vmax

δ
) = log(V 2

max) = O(log Vmax) binary search steps.

Profit Gains. Thus we are able to find a near optimal so-
lution to the optimization problem with Ep(~r) as defined in
Equation 13 by solving a series of optimization problems of
the kind solved in Section 4.2. The profit gains analysis from
section 4.2 extends to the last “yes” solution obtained for a
decision problem. However as this “yes” solution is near op-
timal for the original optimization problem, the profit gains
will be close to that from section 4.2.

5. CONCLUSIONS AND FUTURE WORK
Traditional recommendation systems do not directly in-

corporate the profitability of items into its recommendations
and in this work we propose one of the first direct methods to
do so. Our approach maximizes vendor profit while provid-
ing trustworthy recommendations for the customer. While
our approach is simple, its simplicity allows it to be used in
conjunction with any traditional recommendation system.
Our method is also tunable and allows the vendor to control
how much the profit based recommendation should devi-
ate from the traditional recommendation. Our work is a
starting point and we hope it will simulate new research
on incorporating profits into recommendation systems. The
main future direction for this work is conduct user studies
to verify our assumption that the Dice coefficient is a suit-
able measure of customer trust. It would also be useful to
analyze how the customer’s trust is affected small deviations
from traditional recommendations systems.
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