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Abstract

We study the dynamics of multi-round position auctions, considering
both the case of exogenous click-through rates and the case in which click-
through rates are determined by an endogenous consumer search process.
In both contexts, we demonstrate that the dynamic auctions converge to
their associated static, envy-free equilibria. Furthermore, convergence is
efficient, and the entry of low-quality advertisers does not slow conver-
gence. Because our approach predominantly relies on assumptions com-
mon in the sponsored search literature, our results suggest that dynamic
position auctions converge more generally.

Keywords. Position auctions, dynamic auctions, consumer search, best-
response bidding.

1 Introduction

The position auctions used to allocate sponsored search links are often mod-
eled as games in which advertisers submit bids and are assigned positions in
descending bid order. The utility of each advertiser then depends upon its per-
click valuation, the click-through rate of the position it receives, and the profile
of bids.
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Early position auction models, such as [2], [9], and [17] assumed positions’
click-through rates to be entirely exogenous. New approaches have introduced
the effects of consumer behavior, as in [8] and [3]. However, both approaches typ-
ically rely on static modeling frameworks—leaving open the question of whether
and how outcomes converge to the static equilibrium.1

In this paper, we study dynamic position auctions, considering both the case
of exogenous click-through rates (using the static model of [9]) and the case in
which click-through rates are determined by an endogenous consumer search
process (using the static model of [3]). In each case, we demonstrate that the
dynamic auctions converge to their associated static, envy-free equilibria. This
convergence is efficient. Moreover, the entry of low-quality advertisers does not
slow convergence.

Our contributions are threefold: First, we illustrate that the popular static
position auction equilibrium of [9] arises under a natural best-response bidding
dynamic. We also show that the addition of consumer behavior does not prevent
the eventual stability of the dynamic position auction. Finally, we demonstrate
the robustness of our approach: similar analysis yields the convergence of posi-
tion auctions in significantly different settings.

We proceed as follows: In Section 2, we present a basic dynamic position
auction framework. In Section 3, we present convergence results for both syn-
chronous and asynchronous bidding in position auctions with fixed click-through
rates. In Section 4, we obtain convergence results for the case of endogenous
click-through rates arising from consumer search behavior. Finally, in Section 5,
we conclude with comments on the generality of our approach.

2 Framework

We consider an auction in which N advertisers bid on M < N sponsored link
positions. Each advertiser π has a per-click valuation qπ; we assume that these
valuations are drawn independently from a public, atomless distribution with
support on [0, 1]. For convenience, we label the advertisers π by {1, . . . , N} so
that the valuations qπ satisfy q1 > · · · > qN .

An assignment of advertisers to positions is an injection

P : {1, . . . ,M} ↪→ {1, . . . , N}

such that advertiser P(j) is assigned position j.
We assume a dynamic setting with sequential rounds of play t = 1, 2, . . .. In

each round t > 0, the search engine allocates positions through a generalized
second-price auction:2 the advertiser submitting the j-th highest bid in round t

1There are a few notable exceptions. For example, [10] uses a dynamic position auction
model to derive equilibrium refinements for the static framework of [9].

2The exact details of the implementation of such an auction without and with consumer
search are specified by [9] and [3], respectively. The mechanism is analogous to a second-price
ascending bid auction for the M positions.
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is assigned position j and is charged a per-click price ptj equal to the (j + 1)-st

highest bid submitted in round t.3

3 Bidding Dynamics in the Presence of Fixed
Click-Through Rates

For now, we assume that each position j has an exogenous click-through rate
θj , interpreted as the probability that a consumer clicks on the advertisement
in position j. (In Section 4.1, we instead derive positions’ click-through rates
endogenously as a result of a consumer search process.) We assume that higher
positions have higher click-through rates, i.e. θ1 > · · · > θM

When modeled as a static game of complete information, the generalized
second-price auction has a continuum of Nash equilibria (see [9, 17, 14]). One
of these equilibria results in advertiser payments identical to those which would
arise under the VCG mechanism; this equilibrium is also attractive to advertisers
because it is the “cheapest” equilibrium that is (locally) envy-free in the sense
that an advertiser assigned position j does not want to exchange positions with
the advertiser assigned position (j − 1) at the price the advertiser occupying
position (j − 1) is paying. In that equilibrium, bids follow a recursive formula:

bπj =

{
qπj −

θj
θj−1

(qπj − bπj+1) 1 ≤ j ≤ k,
qπj k < j ≤ N,

(1)

where the j-th highest bid bπj is submitted by advertiser πj . There are multiple
Nash equilibria in the static game. However, [17] and [9] suggest that the
equilibrium given by (1) is the most plausible because its bids are the highest
advertisers can choose while ensuring that no advertiser will lose money if she
accidentally exceeds the bid of the advertiser directly above her and thus moves
up in the allocation of positions.4 Here and throughout subsequent analysis, we
define θ0 := 2θ1, so that the bidding strategy is well-defined in the first position.

3.1 Balanced Bidding

We assume that advertisers π play myopic best-response strategies, submitting
bids under the assumption that all other advertisers will repeat their previous
bids. So that advertisers’ strategies are well-defined in the first round, we assume
a random assignment of advertisers to initial positions, with all initial bids equal
to 0. Under this assumption, we define the restricted balanced bidding strategy.

3This is a rank-by-bid mechanism: payment is proportional to the number of clicks that
occur, but advertisers are ranked in strict bid order. In contrast, rank-by-revenue mecha-
nisms sort advertisers after their bids are weighted by their ads’ expected click-through rates.
We focus on rank-by-bid mechanisms in part because modeling a dynamic rank-by-revenue
mechanism requires modeling fluctuations in advertisers’ expected click-through rates [16].
Furthermore, as shown in [3], rank-by-revenue mechanisms render equilibrium bidding behav-
ior unclear in the presence of consumer search, even in the static context.

4[9] proposes a model where this equilibrium is a unique outcome.
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Definition 1. The restricted balanced bidding (RBB) strategy is the strategy
for advertiser π which, given the bids of the other advertisers in round t,

• targets the position s∗π which maximizes the utility of advertiser π among
the positions with no higher expected click-through rate than her current
position sπ,

• chooses the bid b∗π for round t+ 1 so as to satisfy the equation

θs∗π (qπ − pts∗π ) = θs∗π−1(qπ − b′). (2)

The static bid profile (1) is the unique fixed point of the RBB strategy.
Thus, we see that the condition (2) is not ad-hoc—it arises as the local bidding
condition in round t + 1 of our model when all advertisers play according to
an envy-free symmetric strictly monotone equilibrium strategy. Indeed, if ad-
vertiser π expects other advertisers to repeat their bids from round t, then she
must bid as in (2) if she is to be indifferent between receiving position s∗π − 1 at
price b∗π and receiving position s∗π at price pts∗π .5

The requirement that advertisers only target positions with click-through
rates no higher than those of their current positions is less natural. This is
a technical condition which is necessary in order to obtain convergence in the
synchronous bidding model. As we show in Section 3.3, convergence results for
synchronous bidding under RBB imply that convergence obtains in an asyn-
chronous bidding model even when this technical condition is lifted. Thus, this
condition does not appear overly confining.

Would an advertiser be well advised to choose the RBB strategy? We sim-
ulated a set of advertisers playing a variety of other strategies, and a focus
advertiser choosing between playing RBB and matching the other advertisers’
strategy. Table 1 presents the percent increases in payoff to the focus advertiser
by switching to RBB in an environment with geometric click-through rates and
exponential valuations. For every alternative strategy that we examined, the
focus advertiser increased his payoff by choosing RBB. We found qualitatively
similar results for other distributions of click-through rates (geometric, pareto,
uniform) and valuations (exponential, normal, uniform); on the whole the RBB
strategy yielded more favorable individual payoffs than alternatives.

5Recall that pts∗π
is the price of position s∗π in round t + 1 if all advertisers other than π

repeat their bids from round t.
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All other bidders use % payoff increase to focus bidder by switching
this bidding strategy x from x to RBB from x to BB
Jammer (bids at top of largest gap) 234% 234%
Bids at middle of biggest gap 204% 204%
ROI maximizer 38% 39%

(seeks maximum return on advertising spend)
Mean bidder 1.0% 0.97%

(bids midway between BB point and next-highest bid)
Kind bidder 2.6% 1.6%

(bids midway between BB point and next-lowest bid)
Bid at midpoint of best response interval 2.3% 2.6%
Reinforcement learner

Reinforcing over positions 5.0% 5.4%
Reinforcing over kind/balanced/mean

within best response interval 0.92% 0.60%

Table 1: Payoff Improvements from Switching to the BB Strategy

Simulation details: Number of bidders and number of posi-
tions were held constant at 10. Valuations were drawn from
an exponential distribution with mean 1. Bidders updated bids
asynchronously in random order. Click-through rates were ge-
ometric with rate of decline 0.8. Each point reflects the av-
eraged results of 1000 simulations. Comparison strategies in-
cluded strategies used by practitioners (e.g., strategies offered
by commercial bidding tools, as in [1]) as well as strategies sug-
gested by the academic literature (e.g., reinforcement learning,
as in [11] and the references therein).

Strategy details: The jammer finds the largest price gap (by
subtracting each bid from the bid above it, and finding the
gap of maximum of these differences), then bids at the top of
this gap. In light of the GSP payment rule, this strategy pro-
vides the jammer with the largest possible discount (in cents
per click). The middle of biggest gap strategy targets the same

position, but sets its bid as the arithmetic mean of the top and
bottom of the gap. The ROI maximizer seeks to maximize its
percentage return on advertising spending, maximizing the ra-
tio of its value to its advertising expenditure. The mean, kind,
and midpoint of best response interval bidders all find the best
response interval and bid, respectively, halfway between the
BB point and the next-highest bid, halfway between BB and
next-lowest, and at the midpoint of the best response interval.
Reinforcement learning (RL) bidders consider previous payoffs
when selecting parameters for further bidding. Our first RL
bidder-type reinforces over ranked positions, optimizing over
the prospect of seeking each ordinal position. Our second RL
bidder-type always places a bid in the best response interval
and uses reinforcement learning to select one of nine positions
within that interval (mean, three equally-spaced positions be-
tween mean and BB, BB, three equally-spaced positions be-
tween BB and kind, and kind).
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3.2 Synchronous Bidding Dynamics

We now consider the behavior of dynamic position auctions under synchronous
bidding, in which all advertisers see all round-(t−1) bids and—simultaneously—
submit bids for round t. This problem corresponds to an instance of the syn-
chronous, distributed assignment problem considered by Bertsekas [4]. Applying
an analog of Bertsekas’s approach yields the following convergence result.

Theorem 2. In the synchronous model of dynamic bidding in which each ad-
vertiser bids every round, the RBB strategy always converges to its fixed point.

Proof. We denote γj :=
θj
θj−1

and let γ∗∗ := maxj γj .

Lemma 3. Advertiser π prefers to target position j over position j−1 in round
t+ 1 if and only if (1− γj)qπ + γjp

t
j < ptj−1.

Proof. This follows from the fact that advertiser π prefers to target position j
over position j − 1 if and only if

θj(qπ − ptj) > θj−1(qπ − ptj−1).

Lemma 4. At every round t such that

t > t1 := 2 + logγ∗∗((1− γ∗∗)(qM − qM+1)/qM+1),

we have {
bπ > qM+1 π < M + 1,

bπ = qπ π ≥M + 1,

where bπ is the bid of advertiser 1 ≤ π ≤ N .

Proof. If b is the (M + 1)-st highest bid, then b ≤ qM+1. If b < qM+1 in some
round t, then in the next round any advertiser π ∈ {1, 2, . . . ,M + 1} will either
bid b′π = qπ or target some position j ∈ {1, . . . ,M} with bid

b′π := (1− γj)qπ + γjp
t
j

≥ (1− γ∗∗)qM+1 + γ∗∗b

≥ b+ (1− γ∗∗)(qM+1 − b).

In both of these cases, qM+1 − b′π ≤ γ∗∗(qM+1 − b).
It follows that

qM+1 − b < (1− γ∗∗)(qM − qM+1)

within at most t ≤ logγ∗∗((1 − γ∗∗)(qM − qM+1)/qM+1) rounds. Then, the
bidders π ∈ {1, . . . ,M} will bid at least

(1− γj)qπ + γjp
t
j ≥ (1− γj)qπ + γjb

≥ b+ (1− γj)(qπ − b)
> b+ (1− γ∗∗)(qM − qM+1) > qM+1

in round t+ 1. In round t+ 2, advertiser M + 1 will bid qM+1 while advertisers
π ∈ {1, . . . ,M} bid above qM+1.
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Lemma 4 proves that, within finitely many rounds, the set of advertisers
competing for the M positions will stabilize and that this set will be the collec-
tion of advertisers of maximal quality, {1, . . . ,M}. Furthermore, at this time,
the N −M advertisers {M + 1, . . . , N} will bid their values in every subsequent
round. Thus, we may assume that these rounds have already elapsed; all that
remains is to show that the bids for the M actual positions eventually converge
to the desired fixed point. Since the fixed point is unique, it suffices to prove
convergence.

For any j ∈ [0,M ], we say that the advertisers assigned positions [j + 1,M ]
are stable if their allocation is in order of decreasing quality and their prices
satisfy equation (2). If all M positions are stable, then we have reached the
fixed point of the RBB strategy.

Suppose that, at some round t > t1, the set S = [s+1,M ] of stable positions
is not the full set [1,M ]. Let P denote the set of advertisers in positions [1, s],
and let b denote the minimum bid of these advertisers. Define a partial order A
on stable sets: S′ A S if either S ( S′ or if the advertiser of minimum quality
in (S ∪ S′) \ (S′ ∩ S) belongs to S′.

In round t+ 1, all advertisers in S repeat their bids. We let the new lowest
bid of advertisers in P be b′π, bid by advertiser π. We must consider three cases:

Case 1: b′π < pts. We let j be the position targeted by π. By Lemma 3 and
the definition of RBB, we have ptj < (1− γj)qπ + γjp

t
j = b′π < ptj−1.

We denote by πj ∈ S the advertiser who assigned position j in round t. By
the stability of S, we have ptj−1 = (1− γj)qπj + γjp

t
j . Then, we have

ptj−1 = (1− γtj(qπj ))qπj + γtj(qπj )p
t
j > (1− γj)qπ + γjp

t
j > ptj ,

as advertiser πj is assigned position j in round t (whence qπj ≥ ptj). Further-
more, as S is stable, we have

ptj−1 = (1− γj)qπj + γjp
t
j (3)

by the definition of the RBB strategy. As (3) is larger than the bid of π, we
find qπj > qπ. Likewise, we find that qπj−1 < qπ. Thus, S′ := {π′ ∈ S : qπ′ <
qπ} ∪ {π} is stable and S′ A S.

Case 2: π targets position s. Then π is allocated position s and S∪{π} A S
is stable.

Case 3: π targets some position j ≤ s − 1. Then, S remains stable and
the minimum bid of advertisers in P has increased. We will show that this case
may occur only finitely many times between occurrences of Cases 1 and 2.

As in Section 4.1, we respectively denote the qualities of the advertisers in
positions 1, . . . ,M by qπ1

, . . . , qπM . We then let

ε :=
θM
θ1

(1− γ∗∗) min
π 6=π′

|qπ − qπ′ |
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and let x := log1/γ∗∗((q1 − qM+1)/ε). We will see that at most x instances of
Case 3 may occur between instances of Cases 1 and 2.

Lemma 5. If pts−1 > qπ−ε, then advertiser π prefers position s to any position
j < s.

Proof. We have

qπ − pts = (1− γs+1)(qπ − qπs+1
) + γs+1p

t
s+1

≥ (1− γ∗∗) min
π 6=π′

|qπ − qπ′ |. (4)

The ratio of the expected utility of position k < s to that of position s is less
than

θk(qπ − pts−1)

θs(qπ − pts)
≤ ε θk

θs(qπ − pts)

≤ ε θ1

θs(qπ − pts)
≤ 1.

Now suppose that Case 3 occurs for x consecutive rounds. We let π be the
advertiser in P of minimal quality qπ and denote by b(t

′) the minimal bid of
advertisers in P after t′ consecutive rounds of Case 3. If π′ ∈ P submits the
minimal bid b(t

′+1) in the next round, then

b(t
′+1) ≥ (1− γ∗∗)qπ′ + γ∗∗b(t

′)

≥ (1− γ∗∗)qπ + γ∗∗b(t
′)

≥ qπ − γ∗∗(qπ − b(t
′)).

After x consecutive rounds of Case 3, we have

b(x) ≥ qπ − (γ∗∗)x(qπ − b(0)).

Hence, b(x) ≥ qπ − ε. It follows from Lemma 5 that π will target position s in
the next round, so the next round is an instance of Case 2. Thus, we have shown
that Case 3 may occur only finitely many times between instances of Cases 1
and 2.

Theorem 2 shows that under the RBB strategy, advertisers’ bids converge
to the static bid profile (1). In general, the proof of Theorem 2 yields a rather
weak bound on the convergence time: tracing the argument shows convergence
within

O

(
2M
(

log(1− γ∗)
log γ∗

+ log(1/γ∗)

q1

min1≤π≤M (qπ − qπ+1)
+ log(1/γ∗)

θ1

θM

))
rounds, where γ∗ := maxj

θj
θj−1

determines an advertiser’s maximum marginal

loss from being lowered one position.
A tighter bound can be obtained in the case when the click-through rates

are geometrically decreasing, i.e. when θj = δj−1, for 0 < δ < 1.6

6According to [12, 14], real click-through rates are roughly geometric with δ = 0.7.
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Theorem 6. In the synchronous model of dynamic bidding with geometrically
decreasing click-through rates, θj = δj−1 (with 0 < δ < 1), the RBB strategy
converges to bid profile (1) within

O

(
M3 + logδ

(
(1− δ)qM − qM+1

qM+1

))
rounds.

In the proof of Theorems 2 and 6, the number of rounds until convergence
is constant in N , holding max1≤π≤N qπ fixed. That implies the following result:

Corollary 7. The entry of low-quality advertisers does not slow the auction’s
convergence.

3.3 Asynchronous Bidding Dynamics

We now examine convergence of position auctions under asynchronous bidding
dynamics, in which an advertiser chosen (uniformly) at random updates its bid
in each round, according to the following envy-free bidding strategy.

Definition 8. The balanced bidding (BB) strategy is the strategy for advertiser
π which, given the bids of the other advertisers in round t,

• targets the position s∗π which maximizes the utility of advertiser π,

• chooses the bid b∗π for round t+ 1 so as to satisfy (2).

BB performs well against a variety of other strategies. The final column
of Table 1 presents payoff increases for BB in an environment with geometric
click-through rates and exponential valuations. Similar to our results for RBB,
an advertiser switching to BB obtained increased payoffs. Results were qualita-
tively similar for other distributions of click-through rates (geometric, pareto,
uniform) and valuations (exponential, normal, uniform).

Unlike RBB, the BB strategy does not restrict the positions that advertis-
ers may target. However, like RBB, BB has a unique fixed point—the static
bid profile (1). Our next result shows that asynchronous bidding under BB
converges, and that this convergence is again mediated by the constant γ∗.

Theorem 9. In the asynchronous model of dynamic bidding in which advertis-
ers bid in a (uniformly) random order and follow the balanced bidding strategy,
bids converge to the bid profile (1) with probability 1 and expected convergence
time

O
(
t1(N logM) +N logN +M2M (1+x)

)
,

where (as in the proof of Theorem 2)

t1 = 2 + logγ∗

(
(1− γ∗)(qM − qM+1)

qM+1

)
,

x = log1/γ∗

(
q1 − qM+1

θM
2θ1

(1− γ∗) minπ 6=π′ |qπ − qπ′ |

)
.
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This result follows from the asynchronous-case extension of the arguments
of [4]. For the full proof, see Appendix B.

In general, the bound in Theorem 9 is doubly exponential in the number of
positions, M . However if M is constant (as is the case in practice), then the
bound is nearly linear in the number of bidders, N .

We ran simulations to better evaluate convergence speed in practice. Figure
1 presents convergence time as the number of bidders and number of positions
increase identically. For bidders drawn from exponential distributions, conver-
gence speed is roughly linear in the number of bidders and positions. Results
were similar for bidders drawn from other distributions. A best-fit line (com-
puted using OLS regression) shows the number of bids required per bidder; the
fit is tight, and the slope of the line is not statistically significantly different
from 1. We also simulated other distributions of click-through rates (geometric,
pareto, uniform) and valuations (exponential, normal, uniform) in all combi-
nations. Results were qualitatively similar, and a linear best-fit line remained
a good fit of the number of bids required per bidder, although best-fit slope
ranged from 1.02 to 2.81 (with standard error in every case below 0.1).

4 Bidding Dynamics in the Presence of Con-
sumer Search

4.1 Consumer Search Process

We now consider an auction in which click-through rates θk arise endogenously
as the result of a consumer search process.

We interpret advertisers’ per-click valuations in terms of advertiser quality:
qπ is the probability of meeting an individual consumer’s need; an advertiser
receives a payoff of 1 every time it meets a consumer’s need. With this structure,
advertisers’ per-click valuations are again given by the values qπ, as the expected
per-click revenue of advertiser π is qπ · 1 = qπ.

At all times, a continuum of consumers seek to meet their needs by searching
through the sponsored link list. Consumers are assumed to be ignorant of
the positions’ dynamics, so their beliefs are independent of the dynamics of
advertisers’ bid updating. (A typical consumer will only use a search engine
to seek a given product once, hence no consumer has an opportunity to learn
about the positions’ dynamics.) Additionally, consumers are assumed to believe
that the advertisers’ bidding strategies are strictly monotone in their qualities.
This is a reasonable assumption for our purposes. Indeed, Proposition 5 of [3]
shows that the static position auction game in this framework has a symmetric
pure strategy monotone equilibrium; this equilibrium is the unique equilibrium
of both the static game and the dynamic game in our model.

Each consumer i must pay a search cost of ci for each click on a sponsored
search link. Search costs ci are assumed to be distributed according to a public,
atomless distribution with support on [0, 1] and CDF G. Since search is costly
and consumers believe the links to be sorted in order of descending quality, they
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Figure 1: Convergence speed as number of bidders changes.

Simulation details: Number of bidders and number of positions were increased
identically as indicated. Bidders updated bids asynchronously in random order.
Valuations were drawn from an exponential distribution with mean of 1. All
bidders used the BB bidding strategy. Click-through rates were geometric with
rate of decline 0.8. Convergence was declared when all bids were within 10−6 of
the [9] equilibrium bids indicated in (1). Each plotted point reflects the averaged
results of 100 simulations.
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examine links from top to bottom. Consumers update their predictions about
advertisers’ qualities in a Bayesian manner: when a website does not meet
consumer i’s need, she reduces her estimate of the lower websites’ qualities and
continues searching if and only if the expected value of clicking on the next link
exceeds ci. Since consumers are unable to learn about the positions’ dynamics,
we assume that consumers are slightly myopic: an individual consumer will
maintain her belief that the advertisers below position j have lower qualities
than do the advertisers in positions 1, . . . , j, even if she discovers while searching
that the advertisers are not sorted in order of quality.

Suppose that the advertisers with quality scores qPπ1
, . . . , qPπM are respec-

tively assigned positions 1, . . . ,M in some assignment P mapping advertisers
to positions. Let zPπ1

, . . . , zPπM be Bernoulli variables taking the value 1 with
probabilities qPπ1

, . . . , qPπM . Then a consumer whose need has not been met by
the advertisers in the first j ≥ 1 positions expects that the quality of the firm
in position j + 1 is

q̄Pj+1 := E(qπj+1 | zPπ1
= · · · = zPπj = 0).

The expected probability of the advertiser in the first position meeting a con-
sumer’s need is always q̄P1 := E(qπ). All consumers can compute this value, as
the distribution of advertiser quality is assumed to be public. From these defi-
nitions, it is apparent that q̄Pj > q̄Pj+1 for any 1 ≤ j ≤ M . Then the advertiser

assigned to position j will receive (1 − qPπ1
) · · · (1 − qPπj−1

) · G(q̄Pj ) clicks. (See
Proposition 2 of [3].)

For convenience, we denote

q̄tj := q̄P
t

j , q̄j := q̄P
∗

j ,

where Pt is the assignment of positions in round t and P∗ is the assignment of
advertisers to positions in order of descending valuation. With our assumption
that q1 ≥ · · · ≥ qN , it follows that qP

∗

πj = qj . Then, by construction, q̄j ≥ q̄Pj
for any assignment P and 1 ≤ j ≤M .

4.2 Balanced Bidding

We again assume that each advertiser π plays a myopic best-response strategy
in each round, submitting bids under the assumption that other advertisers
repeat their bids. As before, we assume a random assignment of advertisers to
positions at the beginning of the game (round 0), with all initial bids set to 0.
Under this assumption, we define a restricted balanced bidding strategy, which
is analogous to that of Definition 1.

Definition 10. The restricted balanced bidding (RBB) strategy is the strategy
for advertiser π which, given the bids of the other advertisers in round t,

• targets the position s∗π which maximizes the utility of advertiser π among
the positions with no higher expected click-through rate than the adver-
tiser’s current position sπ,
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• chooses the bid b∗π for round t+ 1 so as to satisfy the equation

(1− qπ)G(q̄ts∗π )(qπ − pts∗π ) = G(q̄ts∗π−1)(qπ − b∗π). (5)

(As above, we define G(q̄t0) := 2G(q̄t1) so that the strategy is well-defined in the
first position.)

Instead, we could require that each advertiser π update its bid with attention
to long-run equilibrium click-through rates, choosing b∗π to satisfy

(1− qπ)G(q̄s∗π )(qπ − pts∗π ) = G(q̄s∗π−1)(qπ − b∗π). (6)

With this bidding assumption, the proof of Theorem 11 applies directly. In
this case, the assumption that consumers always search from the top down is
unnecessary, as this search behavior arises endogenously.

As in the model without consumer search, condition (5) arises as the local
bidding condition in round t+ 1 when all advertisers play according to an envy-
free, symmetric, strictly monotone equilibrium strategy. Furthermore, just as
in the model without consumer search, convergence results for synchronous bid-
ding under RBB imply convergence in an asynchronous bidding model in which
advertisers are not required to target positions with expected click-through rates
(weakly) lower than those of their current positions.

The key difference between Definition 10 and Definition 1 is (5), providing
for round-dependent click-through rates as well as adding a factor of 1 − qπ
which arises from the consumer search process.7

4.3 Synchronous Bidding Dynamics

At the unique fixed point of the RBB strategy, the advertisers choose their bids
according to the recursive strategy presented in Proposition 5 of [3]. (This is a
direct consequence of the proof of Proposition 5 of [3], which shows that these
bids satisfy the condition (5).) That is, the bids at the fixed point are given by

bπj =

{
qπj −

G(q̄j)
G(q̄j−1) (1− qπj )(qπj − bπj+1

) 1 < j ≤M,

qπj M < j ≤ N,
(7)

where the j-th highest bid bπj is submitted by advertiser πj . Our main result
is the convergence of the dynamic position auction to this fixed point.

Theorem 11. In the synchronous model of dynamic bidding in which click-
through rates are determined by consumer search and each advertiser bids every
round, the RBB strategy always converges to its fixed point within finitely many
rounds.

7Since consumers search from the top down, advertiser π expects to lose a fraction of clicks
equal to 1 − qπ when switching from position s∗π − 1 to position s∗π , as 1 − qπ is the expected
fraction of consumers meeting their needs at position s∗π − 1. Including consumer search also
changes the computation of the position s∗π , but this does not materially affect our arguments.
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The proof of Theorem 11, which we present in Appendix C, is analogous
to the proof of Theorem 2. However, the addition of consumer search to the
model produces variation in click-through rates across rounds. This increases
the technical difficulty of the argument; in particular, it renders the results of
[4] inapplicable.

The additional complexity introduced by consumer search weakens the bound
on convergence time. However, even in the presence of consumer search, the en-
try of low-quality advertisers does not affect the speed of convergence.

4.4 Asynchronous Bidding Dynamics

As in the case without consumer search, it is possible to extend Theorem 11
to obtain a convergence result for an asynchronous auction in a less restricted
strategy space.

Definition 12. The balanced bidding (BB) strategy is the strategy for advertiser
π which, given the bids of the other advertisers in round t,

• targets the position s∗π which maximizes the utility of advertiser π,

• chooses the bid b∗π for round t+ 1 so as to satisfy the equation

(1− qπ)G(q̄ts∗π )(qπ − pts∗π ) = G(q̄ts∗π−1)(qπ − b∗π). (8)

(As in RBB, we define G(q̄t0) := 2G(q̄t1), so that this strategy is well-defined in
the first position.)

The BB strategy is a natural envy-free bidding strategy, analogous to Def-
inition 8. Unlike RBB, each advertiser π playing BB may target any position.
However, as in RBB, the bid condition (8) arises as the advertisers’ envy-free
condition in a symmetric, strictly monotone equilibrium. The bid profile (7) is
the unique fixed point of the BB strategy. (This follows directly from Proposi-
tion 5 of [3].)

Our next result, which follows from the proof of Theorem 11, shows that the
dynamic position auction converges under BB in an asynchronous bidding model
in which advertisers update their bids asynchronously, bidding in a uniformly
random order.

Theorem 13. Consider the asynchronous model of dynamic bidding in which
click-through rates are determined by consumer search, and in which advertisers

• bid in a (uniformly) random order and

• follow the balanced bidding strategy.

Then bids converge to the bid profile (7) with probability 1 and expected conver-
gence time

O
(
t1(N logM) +N logN +M2M (1+x)

)
.
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The proof follows directly from the analysis in the proof of Theorem 9. As
before, this result continues to hold if each advertiser π updates with attention to
long-run equilibrium click-through rates, choosing bids b∗π to satisfy (6) instead
of (8).

5 Discussion and Conclusion

Standard models of position auctions largely ignore the question of how bids
converge to equilibrium. Some models assume that advertisers already know
each others’ values. (For example, players could learn others’ values through
previous interactions that are outside the model.) Other models offer an ap-
proach to information revelation that is intended to capture the essence of actual
practice despite important differences from reality. (For example, the general-
ized English Auction of [9] is a metaphor for GSP but not a realistic desription
of the true sponsored search bidding game.) In contrast, the preceding results
establish that if players follow a simple bidding rule in the spirit of myopic best
response, bids eventually converge to the equilibrium proposed in [9] and [17].
Notably, the convergence process we present arises in strikingly different envi-
ronments, including the fixed click-through rate framework of Edelman et al. [9]
and the consumer search model of Athey and Ellison [3].

To identify the conditions supporting our convergence results, we review the
key steps of our proofs of convergence:

1. We restrict the strategy space to a class of plausible bidding behaviors (as
in Definition 10),

2. We establish that the advertisers with the lowest valuations must eventu-
ally bid their values (as in Lemma 17), and

3. We demonstrate that the advertisers who win positions in equilibrium
eventually sort monotonically (as in Cases 1–3 within the proof of Theo-
rem 11).

These steps are consistent with standard assumptions in the sponsored search
literature. For example, some restriction of the strategy space is required to
ensure that the bidding equilibrium is unique. Such a restriction is usually
included even in static models (e.g., envy-freeness in [9] and [3]). Step 1 com-
bines this selection restriction with the requirement that bidders adjust their
bids to maximize individual short-term profits. Since it is always weakly dom-
inant for advertisers to bid their values, the advertisers who actually receive
positions in any position auction should be those with the highest valuations.
Hence, Step 2 seems particularly natural. Finally, Step 3 uses monotonicity
of the equilibrium strategy and best-response dynamics to establish conver-
gence of the auction among the advertisers with the largest valuations.8 Despite
these modest assumptions about bidder behavior, we are able to demonstrate

8Without monotonicity, “bid cycling” may occur. See [7] and [5].
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convergence—suggesting that the “well-behaved” properties of sponsored search
include convergence under reasonable assumptions.

There are clearly limitations to our study: First, the assumption that the
advertisers are able to implement myopic best-responses may not always be re-
alistic, as it requires knowledge of both current prices and click-through rates.
However, both of these data can be learned as long as they are not changing
too rapidly. Second, it is not a priori clear whether advertisers should up-
date myopically. However, a recent paper of Nisanet al. [15] partially assuages
this concern, by showing that for GSP auctions, an individual advertiser’s best
course of action is to best respond whenever all other advertisers best-respond
repeatedly.9 Finally, our work is not immune to the standard criticisms about
the practical relevance of position auction models, such as the fact that they do
not incorporate budgets.
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A Proof of Theorem 6

We begin the analysis after the M highest-value advertisers are all bidding above
qM+1 and the other N−M advertisers are all bidding their values. By Lemma 4,
it will take at most logδ((1− δ)(qM − qM+1)/qM+1) rounds to reach this point.
Then we bound the number of rounds it takes for the M advertisers with values
q1, . . . , qM to obtain positions 1, . . . ,M respectively, with bids as in (1).

For a pair of advertisers π and π′, we say that an inversion occurs in round
t+1 if π is ranked above π′ in round t, and then ranked below π′ in some future

17



round. This is a bad inversion if qπ > qπ′ ; otherwise, it is a good inversion. First
we prove that bad inversions do not occur under RBB when the click-through
rates are geometrically decreasing; hence, the correct ordering is reached after
at most O(M2) inversions. Second we prove there can be at most M −1 rounds
between each good inversion. These two facts together imply that convergence
of the top M positions in O(M3) rounds.

Lemma 14. Let π and π′ be advertisers such that π has a higher value than π′

and suppose π holds a position above π′ in round t. Then in all future rounds
t′ > t, π holds a position above π′.

Proof. Let j be the position occuped by π′ in round t and let j′ be the position
that π′ targets in round t+ 1. Let k and k′ denote the corresponding positions
for advertiser π.

First, we observe that k′ ≤ j′: Since π′ targets j′, π′ has higher utility at
position j′ than at any position s such that j ≤ s ≤ j′. Thus, we have

θj′(qπ′ − ptj′) ≥ θs(qπ′ − pts). (9)

Rearranging (9), we find

qπ′ ≥ (θj′p
t
j′ − θspts)/(θj′ − θs). (10)

Since qπ ≥ qπ′ , (10) implies that

qπ > (θj′p
t
j′ − θspts)/(θj′ − θs). (11)

Hence in round t+1, π targets either position j′ or a position above j. In either
case k′ ≤ j′.

Given that k′ ≤ j′, π will bid bπ = (1 − δ)qπ + δptk′ in round t + 1, and π′

will bid bπ′ = (1− δ)qπ′ + δptj′ .
10 This implies the desired result.

Lemma 14 implies that bad inversions do not occur under RBB when click-
through rates are geometrically decreasing; hence, every inversion is a good
inversion. We show next that there can be at most M − 1 rounds between good
inversions.

Now, we let S = [s + 1,M ] denote the maximum stable set in round t (as
defined in the proof of Theorem 2), and recall that any advertiser assigned a
position in S repeats his bid in round t+ 1.

Let π1, . . . , πM represent the current assignment of advertisers to positions
1, . . . ,M . Our next lemma shows that in every round where there are no inver-
sions, an additional position is added to the stable set. As we have reached the
RBB fixed point once all M positions are stable, this implies that there can be
at most M − 1 rounds between two good inversions.

Lemma 15. If there is no inversion in round t+ 1, then πs targets position s
and bids bπs = δbπs+1

+ (1− δ)qπs (as in (2)) in round t+ 1.

10Recall that as click-through rates are geometrically decreasing, we have γs = δ for all
positions s.
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Proof. Under RBB advertiser πs can only target position s or a lower position
j > s. If πs targets and wins position s in round t + 1, then by RBB he must
bid as in (2), as desired.

Now, suppose πs targets a position j > s. Then its bid bπs must be less
than the current bid b of advertiser πj . Since j ∈ S, πj sumbits bid bj = b in
round t+ 1; hence, bπs < bπj = b, and an inversion (between πs and πj) occurs
in round t+ 1.

Finall, suppose πs targets but does not win position s. Since πs is assigned
position s in round t, this implies there is an inversion (between πs and the
advertiser who wins position s) in round t+ 1.

By Lemma 15, we see that if there is no inversion in round t, then [s,M ] is
stable in round t+1. Combining this fact with our prior observations completes
the proof.

B Proof of Theorem 9

At round t, a player π is activated if π is the advertiser who updates his bid (while
others repeat their previous bids). To prove convergence in the asynchronous
case, we revisit each step of the proof of Theorem 2 (showing convergence in
the synchronous case). We analyze the expected number of asynchronous acti-
vations required to achieve each round of the synchronous proof, given that the
active advertiser is selected with uniform probability in each round.

Step 1. We must first assure that bπ > qM+1 for π ≤ M , and bπ = qπ for
π ≥ M + 1. Lemma 3 showed this round could be obtained in t1 rounds in
the synchronous setting. To use Lemma 3 in the asynchronous case, we must
activate each of the top k + 1 advertisers once per t1 rounds. Because the
active advertiser is picked uniformly from the N advertisers, in expectation
O(N log(M)) activations are required per round to ensure that all M highest-
value advertisers update their bids. Thus, after an average of O(t1N log(M))
activations, the top M+1 advertisers will all be bidding as required. Then each
losing advertiser must be activated once so that each losing advertiser bids its
value. To ensure that all the N − (M + 1) losing advertisers are activated at
least once requires an additional O(N log(N −M)) activations in expectation.
Thus in total the expected number of activations to complete Step 1 in the
asynchronous setting is O(t1N(log(M) + log(N))).

Step 2. Continuing the argument of Theorem 2, we must assure that the
M highest-value advertisers are sorted correctly. Progress entails increasingly
better stable sets (where “better” is defined by the lexicographic ordering A of
Theorem 2).

After Step 1, no losing advertiser can afford a slot. Thus, if a losing advertiser
is activated, he bids his value, which must be less than bM . Thus the bids from
losing advertisers will not interfere with the convergence of the M highest-value
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advertisers’ bids. However, losing advertisers can still consume activations. We
therefore later add a budget of rounds to cover the expected number of losing
advertisers’ activations.

We now define a sequence T of activations of the top M bidders. The
sequence T will be partitioned into phases, corresponding to stable sets (defined
in the proof of Theorem 2). Let S be the current stable set, let [j + 1,M ] be
the slots occupied by the advertisers of S, and let P be the set of advertisers
occupying slots [1, j]. Let πmin be the advertiser in P whose value is minimal.
Consider the three cases enumerated in the proof of Theorem 2. The occurrence
of Case 1 or Case 2 always results in a new stable set. For each stable set, Case
3 can occur at most x rounds, after which a bid from πmin is guaranteed to
result in a new stable set.

To achieve these results in the asynchronous case, we repeatedly activate
the advertiser in slot j until either Case 1 or Case 2 occurs. If neither case
occurs after x activations, then we activate advertiser πmin. At this point a new
stable set is formed, the current phase ends, and we move on to the sequence
of activations required by the next stable set. This completes the definition of
sequence T . As there are 2M stable sets and each stable set requires at most
x+ 1 activations, the length T is bounded by t2 := 2M (x+ 1).

How long will it take to activate advertisers in the order given by sequence
T , if losers are excluded? With M advertisers, the probability of activating
the correct advertiser is at least 1/M per round. Thus the correct sequence of
activations will occur after M t2 rounds, in expectation.

Finally, we add back rounds to account for losing advertisers. We expect (1−
M
N )M t2 losing advertiser activations to occur during Step 2. The second stage

therefore requires M t2 +(1−M
N )M t2 = O(M t2) total activations in expectation.

Summation. Adding the expected rounds required in Step 1 to those from
Step 2, we see that convergence is reached in O(t1(N logM) +N logN +M t2)
rounds, in expectation. It follows that convergence occurs within finitely many
rounds with probability 1.

C Proof of Theorem 11

We denote γtj(q) := (1− q) G(q̄tj)

G(q̄tj−1)
and let

γ∗(q) := (1− q) max
P

[
max
j>0

(
G(q̄Pj )

G(q̄Pj−1)

)]
, γ∗∗ := max

1≤π≤N
γ∗(qπ).

We observe that, by construction,

γtj(qπ) ≤ γ∗(qπ) ≤ γ∗∗ < 1

for any t > 0, 1 ≤ j ≤M , and 1 ≤ π ≤ N . The last of these inequalities follows

from the fact that q̄Pj > q̄Pj+1 for any P and 1 ≤ j ≤M , since then
G(q̄Pj )

G(q̄Pj−1)
< 1.
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We begin with two lemmata.

Lemma 16. Advertiser π prefers to target position j over position j − 1 in
round t+ 1 if and only if (1− γtj(qπ))qπ + γtj(qπ)ptj < ptj−1.

Proof. Upon algebraic manipulation, this follows from the fact that advertiser
π prefers to target position j over position j − 1 if and only if

(1− qπ)G(q̄tj)(qπ − ptj) > G(q̄tj−1)(qπ − ptj−1).

Lemma 17. At every round t such that

t > t1 := 2 + logγ∗∗((1− γ∗∗)(qM − qM+1)/qM+1),

we have {
bπ > qM+1 π < M + 1,

bπ = qπ π ≥M + 1,

where bπ is the bid of advertiser 1 ≤ π ≤ N .

Proof. If b is the (M + 1)-st highest bid, then b ≤ qM+1. If b < qM+1 in some
round t, then in the next round any advertiser π ∈ {1, 2, . . . ,M + 1} will either
bid b′π = qπ or target some position j ∈ {1, . . . ,M} with bid

b′π := (1− γtj(qπ))qπ + γtj(qπ)ptj

≥ (1− γtj(qπ))qM+1 + γtj(qπ)b

= b+ (1− γtj(qπ))(qM+1 − b)
≥ b+ (1− γ∗∗)(qM+1 − b).

In both of these cases, qM+1 − b′π ≤ γ∗∗(qM+1 − b).
It follows that

qM+1 − b < (1− γ∗∗)(qM − qM+1)

within at most t ≤ logγ∗∗((1 − γ∗∗)(qM − qM+1)/qM+1) rounds. Then, the
bidders π ∈ {1, . . . ,M} will bid at least

(1− γtj(qπ))qπ + γtj(qπ)ptj ≥ (1− γtj(qπ))qπ + γtj(qπ)b

≥ b+ (1− γtj(qπ))(qπ − b)
> b+ (1− γ∗∗)(qM − qM+1) > qM+1

in round t+ 1. In round t+ 2, advertiser M + 1 will bid qM+1 while advertisers
π ∈ {1, . . . ,M} bid above qM+1.

Lemma 17 proves that, within finitely many rounds, the set of advertisers
competing for the M positions will stabilize and that this set will be the collec-
tion of advertisers of maximal quality, {1, . . . ,M}. Furthermore, at this time,
the N −M advertisers {M + 1, . . . , N} will bid their values in every subsequent
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round. Thus, we may assume that these rounds have already elapsed; all that
remains is to show that the bids for the M actual positions eventually converge
to the desired fixed point. Since the fixed point is unique, it suffices to prove
convergence.

For any j ∈ [0,M ], we say that the advertisers assigned positions [j + 1,M ]
are stable if their allocation is in order of decreasing quality and their prices
satisfy equation (5). If all M positions are stable, then we have reached the
fixed point of the RBB strategy.

Suppose that, at some round t > t1, the set S = [s+1,M ] of stable positions
is not the full set [1,M ]. Let P denote the set of advertisers in positions [1, s],
and let b denote the minimum bid of these advertisers. Define a partial order A
on stable sets: S′ A S if either S ( S′ or if the advertiser of minimum quality
in (S ∪ S′) \ (S′ ∩ S) belongs to S′.

In round t+ 1, all advertisers in S repeat their bids. We let the new lowest
bid of advertisers in P be b′π, bid by advertiser π. We must consider three cases:

Case 1: b′π < pts. We let j be the position targeted by π. By Lemma 16 and
the definition of RBB, we have ptj < (1− γtj(qπ))qπ + γtj(qπ)ptj = b′π < ptj−1.

We denote by πj ∈ S the advertiser who assigned position j in round t. By
the stability of S, we have ptj−1 = (1− γtj(qπj ))qπj + γtj(qπj )p

t
j . Then, we have

ptj−1 = (1− γtj(qπj ))qπj + γtj(qπj )p
t
j > (1− γtj(qπ))qπ + γtj(qπ)ptj ,

from which it follows that

(qπj − qπ)

(
1 +

G(q̄tj)

G(q̄tj−1)

(
(qπj − ptj) + qπ − 1

))
> 0. (12)

Since advertiser πj is assigned position j in round t, we know that qπj ≥ ptj .

Furthermore, 0 <
G(q̄tj)

G(q̄tj−1)
≤ 1, so

G(q̄tj)

G(q̄tj−1)

(
(qπj − ptj) + qπ − 1

)
> −1.

It follows that (12) holds if and only if qπj > qπ. Likewise, we find that qπj−1
<

qπ. Thus, S′ := {π′ ∈ S : qπ′ < qπ} ∪ {π} is stable and S′ A S.

Case 2: π targets position s. Then π is allocated position s and S∪{π} A S
is stable.

Case 3: π targets some position j ≤ s − 1. Then, S remains stable and
the minimum bid of advertisers in P has increased. We will show that this case
may occur only finitely many times between occurrences of Cases 1 and 2.

22



As in Section 4.1, we respectively denote the qualities of the advertisers in
positions 1, . . . ,M by qπ1 , . . . , qπM . We then let

ε :=
G(q̄M )

2G(q̄1)
(1− γ∗∗) min

π 6=π′
|qπ − qπ′ |

 M∏
j=1

(1− qj)


and let x := log1/γ∗∗((q1 − qM+1)/ε). We will see that at most x instances of
Case 3 may occur between instances of Cases 1 and 2.

Lemma 18. If pts−1 > qπ−ε, then advertiser π prefers position s to any position
j < s.

Proof. We have

qπ − pts = (1− γts+1(qπs+1
))(qπ − qπs+1

) + γts+1(qπs+1
)pts+1

≥ (1− γ∗∗) min
π 6=π′

|qπ − qπ′ |. (13)

The ratio of the expected utility of position k < s to that of position s is less
than

G(q̄tk)(qπ − pts−1)(∏s
j=k(1− qπj )

)
G(q̄ts)(qπ − pts)

≤ ε G(q̄tk)(∏s
j=k(1− qπj )

)
G(q̄ts)(qπ − pts)

≤ ε G(q̄1)(∏s
j=k(1− qπj )

)
G(q̄tM )(qπ − pts)

≤ 1,

where the last inequality follows from (13), the fact that G(q̄ts) ≥ G(q̄M ) (since
t > t1) and from the definition of ε.

Now suppose that Case 3 occurs for x consecutive rounds. We let π be the
advertiser in P of minimal quality qπ and denote by b(t

′) the minimal bid of
advertisers in P after t′ consecutive rounds of Case 3. If π′ ∈ P submits the
minimal bid b(t

′+1) in the next round, then

b(t
′+1) ≥ (1− γ∗(qπ′))qπ′ + γ∗(qπ′)b

(t′)

≥ (1− γ∗(qπ′))qπ + γ∗(qπ′)b
(t′)

= qπ − γ∗(qπ′)(qπ − b(t
′))

≥ qπ − γ∗∗(qπ − b(t
′)).

After x consecutive rounds of Case 3, we have

b(x) ≥ qπ − (γ∗∗)x(qπ − b(0)).

Hence, b(x) ≥ qπ − ε. It follows from Lemma 18 that π will target position s in
the next round, so the next round is an instance of Case 2. Thus, we have shown
that Case 3 may occur only finitely many times between instances of Cases 1
and 2.
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