
A quasi-polynomial time approximation scheme for Euclidean

capacitated vehicle routing∗

Aparna Das Claire Mathieu†

Abstract

In the capacitated vehicle routing problem, introduced by

Dantzig and Ramser in 1959, we are given the locations of

n customers and a depot, along with a vehicle of capacity k,

and wish to find a minimum length collection of tours, each

starting from the depot and visiting at most k customers,

whose union covers all the customers. We give a quasi-

polynomial time approximation scheme for the setting where

the customers and the depot are on the plane, and distances

are given by the Euclidean metric.

1 Introduction

Dantzig and Ramser introduced the vehicle routing
problem (VRP) in 1959 and gave a linear program-
ming based algorithm whose “calculations may be read-
ily performed by hand or automatic digital computing
machine”[10]. Since its introduction, VRP has come to
describe a class of problems where the objective is to
find low cost delivery routes from depots to customers
using a vehicle of limited capacity. The VRP has been
widely studied by researchers in Operations Research
and Computer Science and several books (see [22], [14]
and [12], among others) have been written on the prob-
lems. VRP problems have direct application to business
delivery routing in various industries where transporta-
tion costs matter such as food and beverage distribu-
tion, and package and newspaper delivery. Toth and
Vigo report on several businesses that have saved be-
tween 5 and 20% of total costs by solving VRP problems
via computerized models [22].
Capacitated vehicle routing problem. We study
the most basic form of the vehicle routing problem, the
capacitated version (CVRP), where the input consists of
an integer k representing the capacity of the vehicle, and
n + 1 points representing the locations of n customers
and one depot. The objective is to find a collection of
tours, each starting at the depot and visiting at most
k customers, whose union cover all n customers, such
that the sum of the lengths of the tours is minimized.
The CVRP is also called the k-tours problem in the

∗Both authors supported by NSF grant CCF-0728816.
†Both authors from Brown University-Computer Science.

Computer Science literature [2, 5]. We study the
Euclidean version of the problem where customers and
the depot are on the Euclidean plane.

Popular CVRP heuristics. The CVRP has several
well-known heuristics, each with many variations. In
its basic version, the “savings” algorithm of [8] starts
with the simplest feasible solution, a set of n tours
each visiting a single point and repeatedly chooses two
tours and “merges” them, going directly from the last
location of the first tour to the first location of the
second tour, thus shortcutting one trip to the depot.
The algorithm is greedy; each iteration merges the two
tours yielding the largest savings. The “sweep” heuristic
of [11] is similar to the Jarvis convex hull algorithm. The
“seeding” procedure of [13] places seeds at well-chosen
locations in the plane, associates at most k locations
to each seed so as to minimize the total distance from
locations to associated seeds, and finally builds one
tour for each seed. General-purpose heuristics such as
local search, Tabu search, genetic algorithms, neural
networks and ant colony optimization schemes have also
been applied to this problem. See [17, 22] for details.

The above heuristics seem to perform well on com-
mon test beds [17] however their worst case behavior
(i.e. approximation factors) have not been pinned down
yet. Simple examples show that the basic version of the
above heuristics are not approximation schemes even
on the Euclidean plane. Larson and Odoni [18] give an
example (figure 6.3.2) where the savings algorithm pro-
duces a solution that is 11% more than OPT. Figure 1
shows an example where the sweep heuristic performs
arbitrarily worse than OPT and one where the seeding
algorithm’s tour has length 50% more than OPT.

Approximation algorithms for CVRP. Partial
results are known about the approximability of CVRP.
When the capacity of the vehicle k is 2, the problem can
be solved using minimum weight matching. The metric
case was shown to be APX-complete for all k ≥ 3.
Asano et al. presented a reduction from H-matching
for k = O(1) and there is a simple reduction from
the traveling salesman problem (TSP) for larger k [6].
Constant factor approximation with performance (1+α)

Figure 1: Bad example for Sweep and Seeding. The depot is the

star. (a) There are n/2 customers on both the inside and outside

circles. Take k = n. The sweep tour uses many edges between the

two circles and has length ≈ R · n/2. OPT places all customers

on the inside circle at the end of its tour and has cost at most

4π(R + r). (b) Take k = 4d + 1, d large and let dashed circles

be the seeds. OPT has length about 4d, using two tours each

covering 2d points from the middle and 2d+1 points from the far

right. Seeding has length about 6d; at most k = 4d+1 customers

from the far right are assigned to the far right seed and covered

by tour of length 2d and the remaining customers are covered by

a tour of length about 4d.

where α is the best approximation factor for TSP, were
presented by Haimovich and Rinnooy Kan [15].

The hardness of the CVRP is closely related to
that of TSP. Since the TSP has a polynomial time
approximation schemen (PTAS) in the Euclidean plane,
it has naturally been conjectured that the CVRP also
has a PTAS in that setting [3]. Indeed, in the case
of very large capacity, k = Ω(n), Arora’s PTAS for
TSP easily extends to a PTAS for CVRP. In the case of
small capacity, k = O(log n/ log log n), Asano et al. [5]
presented a PTAS extending [15]; and very recently, for
slightly larger capacity, k ≤ 2logδ n (where δ a function
of ε), Adamaszek et al. presented a PTAS using the
algorithm of this paper as a black box [1].

Our result. We present a quasi-polynomial time
approximation scheme for the entire range of k.

Theorem 1.1. (Main Theorem) Algorithm 1 is a ran-
domized quasi-polynomial time approximation scheme
for the two dimensional Euclidean capacitated vehicle
routing problem. Given ε > 0, it outputs a solution with
expected length (1+O(ε))OPT, in time nlogO(1/ε) n. The
Algorithm can be derandomized.

Our running time is quasi-polynomial, and it is seriously
super-polynomial, so in itself it’s unlikely to lead to
much in the way of practical improvements. Our
attempts to get truly polynomial running time have
been unsuccessful so far; one possible direction might
be to study the easier version of the problem with soft
capacity constraints, where OPT is required to use tours

of capacity k but the algorithm is allowed tours of
capacity k(1 + ε).

Extensions and open problems. There are many
variations of the CVRP problem. In the most common
variation, not only is the vehicle capacity fixed, but
the total number of vehicles is also bounded by some
number m. This happens in settings where the tours
must occur simultaneously. In another variation, the
primary objective is to minimize, not the sum of tour
lengths, but the maximum tour length (for example,
all garbage must be picked up by a certain time.) In
yet another variation, each point has a “demand” (less
than or equal to k), and the solution must deliver
the entire demand using one tour (in other words,
split deliveries are not allowed). This models grocery
deliveries for example. In more complicated variations,
each point has a time window in which it must be
visited. In addition, there can be more than one depot,
and the tour could be required to perform a mixture
of pickups and deliveries. None of those problems have
approximation schemes, not even quasi-polynomial time
approximation schemes.

In this work we designed the first quasi-polynomial
time approximation scheme for the most basic CVRP
problem. We hope that our work will stimulate new
research for designing approximation schemes for some
of the above variants. In particular it is not hard to see
that our method can be applied to solve the common
variant where the number of vehicles is bounded by m
and the capacity constraint is soft: if L is the value of
the optimal solution that is constrained to use at most
m tours that each pick up at most k points, then our
approach can be extended to construct at most m tours,
each picking up at most k(1+ε) points, with total length
at most L(1 + ε).

Where previous approaches fail. Our approxima-
tion scheme uses the divide and conquer approach that
Arora used in designing a PTAS for Euclidean TSP [2].
Like Arora, we “divide” the problem using a random-
ized dissection that recursively partitions the region of
input points into progressively smaller boxes. We search
for a solution that goes back and forth between adjacent
boxes a limited number of times and always through a
small number of predetermined sites called portals that
are placed along the boundary of boxes. It is natural to
attempt to extend the TSP structure theorem to show
that there exists a near optimal solution that crosses the
boundary of boxes a small number of times, and then
use dynamic programming. Unfortunately, as noted by
Arora [3],

“we seem to need a result stating that there
is a near-optimum solution which enters or

leaves each area a small number of times. This
does not appear to be true. [...] The difficulty
lies in deciding upon a small interface between
adjacent boxes, since a large number of tours
may cross the edge between them. It seems that
the interface has to specify something about
each of them, which uses up too many bits.”

Indeed, to combine solutions in adjacent boxes it
seems necessary to remember the number of points
covered by each tour segment and that is too much
information to remember.

Overview of our approach. To get around this
problem we introduce a new trick which allows us to
remember approximately how many points are on each
tour segment. We design a simple randomized technique
that drops points from tour segments. Our technique
ensures that the dropped points can be covered at low
cost with additional tours, and we simply use a 3-
approximation [15] to cover them in the end. (See
Figure 2.) Thanks to dropping points, we may assume
that the number of points on each tour segment is a
power of (1 + ε/ log n), so there are only O(log n log k)
possibilities. This is a huge saving (when k is Ω(log n))
compared to the k possibilities that would be required to
remember the number of points exactly and it enables us
to deal with the difficulties described by Arora: now we
have a small interface between adjacent boxes, namely,
for every pair of portals and every threshold number of
points, we remember the number of tour segments that
have this profile. The quasipolynomial running time of
our dynamic program (DP) follows as the number of
profiles is polylogarithmic and there are at most n tour
segments of each profile.

The main technical difficulty consists in showing
that the dropped points can be covered at low cost.
That cost is split in several components, analyzed
separately using a variety of techniques. Let us point
out an idea used to analyze one of the components:
consider an instance of the problem such that the
optimal solution crosses each cut at least δ times. Then
OPT has value at least δ times the cost of the minimum
spanning tree (see proof of Proposition 5.6.). This lower
bound is simple, but new, and crucial in analyzing boxes
of a dissection that are visited by many tour segments.

Obstacles for extension to PTAS. Since we de-
scribe a tour segment by the pair of portals it uses and
the threshold number of points it covers, and there are
O(log n) portals and O(log2 n) thresholds we get a poly-
logarithmic number of profiles. The quasipolynomial
running time of our method follows as there can be at
most n tour segments of each profile. To reduce the
number of tour profiles we seem to require a result show-

Figure 2: A solution computed by Algorithm 1 for k = 7. The

star is the depot, the solid circles are the “black” points and the

empty circles are the “red” points. The solid tours are computed

by the DP in step 2, each covering ≤ k “black” points. The dotted

tour covers the “red” points and is computed in step 5 using the

3-approximation.

ing the existence of a near optimal solution that uses a
small number of portals in each box. We also need to
be able to reduce the number of thresholds while still
maintaining that each tour covers no more than (1+ε)k
points. Additionally a few factors of our quasipolyno-
mial running time comes from accumulating cost over
the O(log n) levels of the randomized dissection tree and
a more global accounting of cost could help reduce the
running time.

Related Techniques. Our work builds on the ap-
proach that Arora [2] used in designing a PTAS for the
geometric traveling salesman problem. Similar tech-
niques were also presented by Mitchell [19]. Recently
these techniques have been applied to design approxima-
tion schemes for several NP-Hard geometric problems,
including the polynomial time approximation schemes
for Steiner Forest [7], and k-Median [16] and quasipoly-
nomial time schemes for Minimum Weight Triangula-
tion [21] and Minimum Latency problems [4] among
others. See [3] for a survey of these techniques.

Outline. Section 2 presents our approximation
scheme and the proof of correctness under the assump-
tions that the DP solution is near optimal (Theorem 2.2,
proved in Section 4) and that the 3-approximation solu-
tion on the dropped points has length at most O(ε)OPT
(Theorem 2.4, proved in Section 5). Section 3 presents
the DP and Section 6 the derandomization.

2 The Algorithm

Algorithm 1 is an overview of our approximation
scheme. A quasipolynomial time DP is used to find a
near optimal solution, OPTDP , that includes some tours
that cover more than k points. A set of feasible black
tours is obtained by dropping points from the infeasi-
ble tours of OPTDP . The dropped points are chosen
carefully using a randomized procedure and are colored
red. A 3-approximation is used to construct a solution
all red points. The final output is the union of the red
and black tours. See Figure 2 for an example.

Algorithm 1 CVRP approximation scheme
Input: n points ∈ R2 and integer k

1: Perturb instance, perform random dissection and
place portals as described in Section 2.1.

2: Use the DP from Section 3 to find OPTDP which is
defined in Subsection 2.2.

3: Trace back in the DP’s history to construct black
tours and assign types to points using the random-
ized type assignment from Subsection 2.4.

4: Color a point black if it has type −1 and red
otherwise. Drop all red points from the black tours.

5: Use the 3-approximation Algorithm from Subsec-
tion 2.3 to get solution on just the red points.

Output: the union of the red tours on the red points
and the black tours on the black points.

Figure 3: A randomized dissection. The figure on the left shows

a dissection with lines and boxes and their levels. The figure on

the right shows a portal respecting light tour which crosses the

boundaries of boxes only at portals and at most r = O(1/ε) times.

2.1 Preprocessing [2] Algorithm 1 works on a per-
turbed instance which we obtain following Arora’s ap-
proach [2]. A solution for the perturbed instance can be
extended to the original instance using additional length
O(ε)OPT. After the perturbation step we use OPT to
denote the optimal CVRP solution of the perturbed in-
stance. We build a randomized dissection of the per-
turbed instance and place portals along the boundaries
of the dissection boxes as done in Arora’s work. With
the help of Arora’s structure theorem 2.1, we can re-
strict ourselves to look for portal respecting and light
tours (Definition 2.1). Details are below.

Perturbation. Define a bounding box as the smallest
box whose side length L is a power of 2 that contains all
input points and the depot. Let d denote the maximum
distance between any two input points. Place a grid
of granularity dε/n inside the bounding box. Move
every input point to the center of the grid box it lies
in. Several points may map to the same grid box center

and we will treat these as multiple points which are
located at the same location. Finally scale distances by
4n/(εd) so that all coordinates become integral and the
minimum non-zero distance is least 4.
Solution to original instance. The solution for the
perturbed instance is extended to a solution for the
original instance by taking detours from the grid centers
to the locations of the points. The total cost of these
detours is at most n ·

√
2dε/n. As the two farthest

points must be visited from the depot we have that
2d ≤ OPT. Thus the total cost of detours is ≤ εOPT
and is negligible compared to OPT. Note also that
scaling does not change the structure of the optimal
solution. After scaling the maximum distance between
points L will be O(n).
Randomized Dissection. A dissection of the bound-
ing box is obtained by recursively partitioning a box into
4 smaller boxes of equal size using one horizontal and
one vertical dissection line. The recursion stops when
the smallest boxes have size 1×1. The bounding box has
level 0, the 4 boxes created by the first dissection have
level 1, and since L = O(n) the level of the 1× 1 boxes
will be `max = O(log n). The horizontal and vertical
dissection lines are also assigned levels. The boundary
of the bounding box has level 0, the 2i−1 horizontal and
2i−1 vertical lines that form level i boxes by partition-
ing the level i − 1 boxes are each assigned level i. See
Figure 3. A randomized dissection of the bounding box
is obtained by randomly choosing integers a, b ∈ [0, L),
and shifting the x coordinates of all horizontal dissec-
tion lines by a and all vertical dissection lines by b and
reducing modulo L. For example the level 1 horizontal
line is moved from L/2 to a+L/2 mod L and the level
1 vertical line is moved to b + L/2 mod L. The dissec-
tion is “wrapped around” and wrapped around boxes
are treated as one region. The crucial property is that
the probability that a line l becomes a level ` dissection
line in the randomized dissection is

(2.1) Pr(level(l) = `) = 2`/L

Portals. As in [2], we place points called portals on the
boundary of dissection boxes that will be the entry and
exit points for tours. Let m = O(log n/ε) and a power
of 2. Place 2`m portals equidistant apart on each level
` dissection line for all ` ≤ `max. Since a level ` line
forms the boundary of 2` level ` boxes there will be at
most a 4m portals along the boundary of any dissection
box b. As m and L are powers of 2, portals at lower
level boxes will also be portals in higher level boxes.

Definition 2.1. (Portal respecting and light) A tour
is portal respecting if it crosses dissection lines only

at portals. A tour is light if it crosses each side of a
dissection box at most r = O(1/ε) times.

See Figure 3. Arora proved there exists a near
optimal TSP solution that is portal respecting and light.

Theorem 2.1. [2](Arora’s Structure Theorem) Let
OPT(TSP) denote the optimal solution for an instance
of Euclidean TSP and let D be a randomized dissec-
tion. With probability ≥ 1/2 there exists a portal
respecting and light tour with respect to D of length
(1 + O(ε))OPT(TSP).

2.2 The Structure Theorem We define
O(log n log k) thresholds in the range [1, k]. In-
stead of remembering the exact number of points on
a segment we remember its threshold number. A tour
segment is called “rounded” if it covers a threshold
number of points. To “round” a tour segment covering
x points we find, the largest threshold value t < x and
set the type of exactly x − t points to indicate that
they should be dropped from the segment. As the DP
works bottom-up in the dissection tree it rounds tour
segments at each level of the tree. To drop a point at
level ` it sets the type of the point to `. In the end,
all points with type between [0, `max] are dropped from
the tours.

Definition 2.2. (Thresholds, types, rounded seg-
ments)

• Let τ = log(1+ε/ log n)(kε) + 1/ε. The sequence of
τ + 1/ε thresholds are 1, 2, 3, . . . , 1/ε, t1 = 1/ε(1 +
ε/ log n), . . . , ti = 1/ε(1 + ε/ log n)i, . . . , tτ = k.

• The type of a point is an integer in [−1, `max]. A
point is active at level ` if its type is strictly less
than `.

• Let Π = (πi) be a set of tours. For any dissection
box b at level `, a segment is a piece of a tour πi

that enters and exits b at most once. A segment is
rounded at level ` if it covers exactly a threshold,
ti, number of active points otherwise it is called
unrounded. See Figure 4 for an example of rounded
and unrounded segments.

• Let γ = dlog4 n/ε4e. We will always round tour
segments in groups of size γ.

The DP builds tours that may cover more than k
points and thus in one sense solves a relaxed version of
CVRP. To ensure that the DP solution can be made
feasible at small cost, tour segments inside a dissection
box are only rounded when there are many, at least γ
(defined above), segments entering the box in which case

Figure 4: The figure shows boxes at levels ` + 1 and `, and four

types of points. The points of type > ` + 1 (white) and type

= ` + 1 (stripped) are inactive in all boxes shown. Points with

type = ` (dotted) are active at level ` + 1. Points of type < `

(solid) are active in all shown boxes. Assume thresholds are 5, 9.

In level `, segment S is rounded as it covers 9 active points. In

level ` + 1, segment S is rounded in the left box covering 5 active

points and unrounded in the right box covering 6 active points.

the cost of going from the depot to the dropped points
in the box can be charged to OPT. If a box has less
than γ segments, we can afford to remember the exact
number of points on each segment. The third part of
definition 2.3 limits the number of points that can be
dropped from each tour.

Definition 2.3. (Relaxed CVRP) A relaxed CVRP is
a set of tours such that there exists an assignment of
types to the points with the following properties:

1. Each tour covers the depot, at most k points of type
= −1, and possibly some points of type > −1. The
union of the tours covers all n points.

2. Each dissection box contains some integer multi-
ple of γ rounded tour segments and at most γ un-
rounded tour segments.

3. Let b be a dissection box and let s be a tour segment
in b, which has t active points at level(b). Then
segment s has at most t(1 + ε/ log n) active points
at level(b) + 1.

The DP will find a structured CVRP solution.

Definition 2.4. (Structured CVRP) Let D be a dis-
section and let S be CVRP solution consisting of tours
Π = (πi). S is called structured if S is relaxed and each
tour πi is portal respecting and light.

We extend the objective function to include a
penalty for the number of tour crossings:

Definition 2.5. (Extended Objective Function) Let
Π = (πi) be a set of tours. For every level ` let c(πi, `)
be the number of times tour πi crosses the boundary of

level ` boxes, and d` = L/2` denote the length of a level
` dissection box. The extended objective function is:
(2.2)

F (Π) =
∑

i

length(πi) +
ε

log n

∑
level`

∑
i

c(πi, `) · d`,

Theorem 2.2. (Structure Theorem) In expectation
over shifts of the random dissection, there exists a struc-
tured CVRP solution of length (1+O(ε))OPT that min-
imizes objective function F of Equation 2.2.

Theorem 2.2 is proved in Section 4. Let OPTDP

denote the structured CVRP solution that minimizes
the extended objective function F of Equation 2.2.
Section 3 describes the DP to compute OPTDP .

2.3 A constant factor approximation [15] To
make the structured CVRP solution feasible we drop
points from tours containing more than k points and
we color dropped points red. A solution for red points
is built using Haimovich and Rinnooy Kan’s algorithm
(Algorithm 2) which partitions a TSP of the red points
into tours that cover at most k points [15]. Theorem
2.3 shows the algorithm is a 3-approximation.

Theorem 2.3. [15, 5] Let I denote the set of input
points, o the depot, and d(i, o) denote the distance of
point i from the depot. Define Rad(I) = 2

k ·
∑

i∈I d(i, o)
and let TSP (I∪o) denote the length of the minimal tour
of I and o. Then we have,

• Rad(I) ≤ OPT

• TSP (I ∪ o) ≤ OPT

• In expectation the solution of Algorithm 2 has
length Rad(I) + 2 · TSP (I ∪ o) ≤ 3OPT.

Algorithm 2 TSP Partitioning 3-approximation [15]
Input: n points, depot, and integer k

1: Let π denote a tour of input points and the depot
obtained using a 2-approximation of TSP.

2: Choose a point p uniformly at random from π.
3: Go around π starting at p, and every time k points

are visited, take a detour to the depot.
Output the resulting set of bn/kc+ 1 tours.

2.4 Assigning Types The 3-approximation solution
of the red points has small value when Rad and TSP of
the red points have small value. To ensure this our
type assignment procedure, Algorithm 3, drops points
from segment S such that the length of the interval
connecting dropped points is small, O(ε)length(S), and

Figure 5: b is a level ` box with |Sa| = 8 active points (the dark

circles) and two inactive points (the white circles). If the closest

threshold to 8 is 5, y = 3 points are marked to be dropped. Here

p and the next two active points are labelled type `.

such that the average distance of the dropped points to
the depot is an O(ε) fraction of the average distance of
points on segment S to the depot. Figure 5 illustrates
Algorithm 3.

Algorithm 3 Randomized Type Assignment Procedure
Input: A tour segment S from a level ` box b containing
active points Sa and requiring y active points to be
dropped
1: Select an active point p uniformly from Sa

2: Select p and the y − 1 consecutive points after p
which are all in Sa; if there are less than y − 1
active points on the segment after p, wrap around
and select active points from the other end of the
segment.

3: Label each of the y chosen points with type `.

2.5 Proof of Main Theorem 1.1 We use the DP of
Lemma 2.1 to compute the structured CVRP solution.
Section 3 proves Lemma 2.1.

Lemma 2.1. (Dynamic Program) Given the set of input
points and a randomly shifted dissection, the dynamic
program of Section 3 finds a structured CVRP solution
that minimizes the objective F defined in Equation (2.2)
in time nlogO(1/ε) n.

The output of Algorithm 1 has length equal to the
lengths of the black tours plus the lengths of red tours.
The black tours have length at most OPTDP as they are
obtained by dropping points from the DP solution. By
Theorem 2.2 OPTDP has length at most (1+O(ε))OPT.
Theorem 2.4, which is proved in Section 5, shows that
the length of the red tours is O(ε)OPT.

Theorem 2.4. In expectation over the random shifts
of the dissection and the random type assignment,

the length of the red tours output by Algorithm 1 is
O(ε)OPT.

Thus the solution output by Algorithm 1 has total
length (1 + O(ε))OPT. The DP dominates the run-
ning time. The derandomization of the Algorithm is
discussed in Section 6.

3 The Dynamic Program

The DP table. A configuration C of a dissection box
b is a list of entries describing the tour segments inside
b. A configuration is described by two sublists, one that
records information about rounded tour segments and
other about unrounded tour segments:

1. Rounded sublist: (rp,q
1 , . . . , rp,q

i , . . . rp,q
τ), where rp,q

i

is the number of rounded tour segments that use
portals p and q and cover exactly ti active points.

2. Unrounded sublist: (up,q
1 , . . . , . . . , up,q

γ), where up,q
j

is the number of active points covered by the j-th
unrounded tour segment that uses portals p and q.

The DP has a table entry Lb[C] for each dissection
box b and each configuration C of b. Lb[C] is the
minimum cost1 of placing tour segments in b which
are compatible with C and are structured as defined
by Definition 2.4. OPTDP is the minimum table entry
over all configurations of the root level box.
Computing the table entries. Compute table entries
in bottom-up order. Inductively, let b be a box at level
` and let b1, b2, b3, b4 be the children of b at level ` + 1.
As every tour is structured (and in particular portal
respecting and light) , a tour segment in b crosses the
boundaries of boxes b1, b2, b3, b4 inside b, at most 4r
times, and always through portals. Thus the segment
in b is the concatenation of at most 4r + 1 pieces,
where a piece goes from some portal mi to some portal
mi+1 in one of the children of b. As the tour must
be structured, each piece is either rounded or one of
the at most γ unrounded tours inside a child of b.
Every piece can be described by a tuple (p, q, x), where
p, q are portals and x is either a threshold ti for some
i < τ or x is a number j ≤ γ indicating it is the j-th
unrounded tour in a child box of b. The concatenation
profile Φ = (p, m1, n1), (m1,m2, n2), . . . (mv, p′, nv) of
the segment is the list of those 4r+1 tuples, representing
tour segment pieces. Suppose that the concatenation of
the pieces described by Φ contains x active points. If b is
described as an unrounded box by C then the DP counts
this segment as having x active points. Otherwise if b is
a rounded box, the DP counts the segment as having ti

1Cost is computed using objective F defined in Equation 2.2.

active points where ti is the largest threshold less than
x i.e, ti ≤ x < ti(1 + ε/ log n).

Let D denote the number of possible concatenation
profiles for a segment in box b. For each Φ, let nΦ denote
the number of tour segments in b with concatenation
profile Φ. An interface vector I = (nΦ)Φ is a list
of D entries. Intuitively, the vector I provides the
interface between how tour segments in b are formed
by concatenating the segments of b’s children.

Let C0 be a configuration for box b. The cal-
culation of Lb(C0) is done in a brute force manner
by iterating through all possible values of the inter-
face vector I and all possible combinations of config-
urations in b’s children, C1, C2, C3, C4. A combination
C0, I, C1, C2, C3, C4 is consistent if I describes at most
γ unrounded segment and if gluing C1, C2, C3, C4 ac-
cording to I yields configuration C0.

The cost of configurations C1, . . . C4 is stored in
lookup tables Lbi

(Ci), 1 ≤ i ≤ 4. Let cb(I) be the total
number of tour segments in b as specified by I. The
value of objective function F , defined in Equation 2.2,
of (C1, C2, C3, C4, I) is (ε/ log n) · 2cb(I) plus the sum
of the costs of Ci for child box bi. Entry Lb(C0) stores
the cost of the tuple (C1, C2, C3, C4, I) that is consistent
with C0 and minimizes objective function F .

Running time of dynamic program. How many
possible configurations are there for a box b? A
configuration of b is a list of O((τ + γ) log2 n) entries;
there are O(log2 n) different pairs of portals (p, q); for
each (p, q), there are τ entries in the rounded sublist
and γ entries in the unrounded sublist. Each entry
of the list (the rp,q

i and up,q
j) is an integer less than

n, thus the total number of configurations for box b
is nO((τ+γ) log2 n) = nO(log6 n). As there are O(n2)
dissection boxes, the DP table has size nO(log6 n) overall.

How many possible concatenation profiles are there
for a segment in box b? Each Φ has a list of O(r) tuples
(p, p′, x). There are O(log2 n) choices of portals p, p′

and γ + τ choices of x, so there are O((τ + γ) log2 n) =
O(log6 n) possibilities for each tuple. Thus there are
D = (log6 n)O(r) possible values of Φ. As r = O(1/ε),
D = logO(1/ε) n.

How many possible interfaces are there for a box b?
At most nD, as each nΦ is an integer less than n. Thus
we have a quasi-polynomial number of possibilities for
the interface vector I for box b.

Checking for consistency takes time polynomial in
the size of the list of entries in I and configurations Ci

for 0 ≤ i ≤ 4. There are nlog6 n possible values for each
Ci and nlogO(1/ε) n possible values for I. Thus in total
it takes time polynomial in nlogO(1/ε) n to run through
all combinations of I, C1, C2, C3, C4 and to compute the

lookup table entry at Lb[C0].
Remark. The DP verifies the existence of a type-
assignment satisfying the relaxed CVRP Definition 2.3
but does not actually label points with a specific type.
It merely records the number of active points the tour
segments it constructs should have. Once the cost of
OPTDP solution is found, we can trace through DP
solution’s history, and find a valid type assignment by
looking at the decisions made by the DP. In fact the
type assignment can be done while the tours of OPTDP

are constructed. If we construct a tour segment with x
active points at level ` that the DP’s history recorded
as having t active points, any x − t active points can
be chosen from the segment and labeled with type `.
Labelling any active points on the segment with type
l will satisfy the relaxed CVRP definition. But we use
the randomized type assignment Algorithm 3 instead to
ensure that the labelled points, which will be dropped
later, can all be covered with small cost.

4 Proof of the Structure Theorem

Let OPTL denote the CVRP solution of minimum
length consisting of tours that are each portal respecting
and light. F (OPTDP) ≤ (1 + O(ε))OPTL by Lemma
4.1, where F the extended objective function of Equa-
tion 2.2. As OPTDP ≤ F (OPTDP), this immediately
implies, OPTDP ≤ (1+O(ε))OPTL. The structure the-
orem follows by Corollary 4.1 which shows that OPTL

is near optimal.

Lemma 4.1. In expectation over the random shifts of
the dissection, F (OPTDP) ≤ (1 + O(ε))OPTL.
(Proof given below.)

Corollary 4.1. (Generalization of Arora) In ex-
pectation over the random shifts of the dissection,
E[OPTL] ≤ (1 + O(ε))OPT

Proof. Let OPTL consist of the set of tours ΠL =
π1, . . . πm. Apply Arora’s structure Theorem 2.1 to each
tour, sum, and use linearity of expectation.

4.1 Proof of Lemma 4.1

Proof. To compare OPTDP and OPTL, we apply
Lemma 4.2 to turn OPTL into a solution that satisfies
the relaxed Definition 2.3.

Lemma 4.2. Let S be any CVRP solution. There exists
a type assignment, such that S becomes a relaxed CVRP
solution satisfying Definition 2.3 and the length of S is
unchanged.

The proof of Lemma 4.2 is given below. Using the
type assignment of Lemma 4.2, OPTL turns into a

relaxed tour without increasing its cost. OPTL contains
only portal respecting and light tours thus it is now a
structured tour so we can compare its cost to OPTDP .
Let ΠL denote the set of tours of OPTL and Π the tours
of OPT. As OPTDP minimizes objective function F , we
have F (OPTDP) ≤ F (OPTL) which is equal to, 2

(4.3) F (OPTL) = OPTL +
ε

log n

∑
level `

c(ΠL, `) · d`

Our goal now is to show that the last term of Equation
4.3 is O(ε)OPTL in expectation. Lemma 4.3 lets us to
bound the number of crossings in ΠL in terms of the
number of crossings in Π. Lemma 4.4 lets us to charge
each crossing of Π to the length of OPT.

Lemma 4.3. For a random dissection at any level `,
E[c(ΠL, `)] ≤ (2 + O(ε))E[c(Π, `)].

Lemma 4.4. In expectation over the random dissection,
for any level `, O(d`)E[(c(Π, `)] ≤ OPT.

Using Lemma 4.3 and 4.4 (proofs below) we have that
the last term of Equation 4.3 is,

ε

log n

∑
level `

E[c(ΠL, `)] · d`

≤ ε

log n

∑
level `

O(2 + ε) · E[c(Π, `)] · d`(4.4)

≤ ε

log n

∑
level `

OPT(4.5)

≤ ε

log n
· `max ·OPT = O(ε)OPT(4.6)

Equation 4.4 follows by Lemma 4.3, Equation 4.5 follows
by Lemma 4.4 and Equation 4.6 follows as there are at
most `max = O(log n) levels.

4.2 Proof of Lemma 4.2 We describe a type assign-
ment procedure to prove the Lemma. Initially assign
type = −1 to all points. Work in a bottom up fash-
ion in the dissection tree from level `max to level 0. At
current level ` consider each dissection box b one at a
time. While box b has more than γ unrounded tour seg-
ments, select exactly γ unrounded segments and round
the γ segments as a group as follows: Consider each
of the γ segments one at a time. If the segment has
x active points with ti < x < ti+1, pick any x − ti of
these active points and label them as type `. Perform
as many group-rounding steps as necessary until there
are at most γ unrounded tours left in box b. Proceed
similarly to the other boxes at level `.

2To ease notation, c(ΠL, `) means
P

π∈ΠL c(πL
i , `).

The type assignment procedure does not change any
tour in S thus the cost of S is unchanged. Now we verify
that the relaxed CVRP Definition 2.3 will be satisfied at
the end of the procedure. As S is initially a valid CVRP
solution, each tour in S visits the depot and visits at
most k other points. The procedure only assigns types
≥ −1. Thus each tour will contain at most k points of
type −1 satisfying the first condition of definition 2.3.

Consider a box b at level `. We perform rounding
in γ sized groups in b until it has at most γ unrounded
segments which implies that b will always contains an
integer multiple of γ rounded segments. Thus the
second condition holds for b right after the procedure
has finished working on level `. On levels j < ` points
are labelled with types j < `. Thus the number of
active points (and hence the number of rounded and
unrounded segments) remains the same at level `, and
condition two continues to hold in box b while the
procedure works on levels < `.

Consider a segment prior to and after it is rounded
at level `. Prior to rounding all points on the segment
either have type = −1 or a type strictly greater than `,
so the segment has the same number of active points,
at level ` and at level ` + 1. Let x be the number of
active points prior to rounding such that ti ≤ x ≤ ti+1.
After rounding the segment has x − ti points labelled
with type ` which leaves ti active points at level ` and x
active points at level `+1. As ti(1+ε/ log n) = ti+1 > x,
the third condition of Definition 2.3 is satisfied.

4.3 Proofs of Lemma 4.3 and 4.4 We list some
useful properties required for the proofs of Lemmas 4.3
and 4.4. Let t(πj , l) denote the number of times a tour
πj crosses dissection line l. Arora proved the following
useful property relating the length of πj to t(πj , l).

Property 4.1. [2] length(πj) ≥ 1
2

∑
line l t(πj , l)

Let Π = (πi) be the tours of the optimal CVRP
solution. As

∑
j πj = OPT, Arora’s Property 4.1

implies that

(4.7) OPT ≥ 1
2

∑
line l

t(Π, l)

We can write the expected number of crossings on level
` boxes in terms t(Π, l). We have,

E(c(π, `)) =
∑
line l

t(Π, l)·Pr[l is boundary of level ` box]

The boundaries of level ` boxes are formed by lines at
levels ≤ ` and by Equation 2.1 the probability that a
line is at level ≤ ` is 2`+1/L. Thus for any level `,

(4.8) E(c(Π, `)) =
2`+2

L

∑
line l

t(Π, l)

Proof. (Proof of Lemma 4.3) To modify the OPT tours,
Π, into the OPTL tours, ΠL, Arora’s procedure first
does bottom up patching to ensure that the boundary
of each dissection box is crossed at most r = O(1/ε)
times per tour. Second, it takes detours (along the sides
of boxes) to make the tours are portal respecting. Both
patching and detouring, may add new crossings to ΠL

that are not present in Π.
New crossings from patching. Focus on a box on some
level `. Let l be a line such that level(l) = i for i < `
and let pl,j denote the number segments of l that will
be patched at levels j ≥ i. Each application of patching
replaces at least r−4 crossings with at most 4 crossings.
Thus we have

(4.9)
∑
j≥i

pl,j ≤
t(Π, l)
r − 3

Patching on segments of line l at levels j < ` introduces
6 · 2`−j−1 crossings at level `. This follows as there are
2`−j level ` boxes along the level j segment of line l for
all j ≤ ` and each of Arora’s patchings add at most
6 new crossings to each child box along the segment.
Thus the number of new crossings introduced at level `
from patching on line l is

∑
j≥i pl,j · 6 · 2`−j . Whether

the crossings get added depends on whether level(l) = i.
Thus the expected number of additional crossings from
patching on line l is

E(new crossings from patching on line l)

=
∑

`>i≥1

Pr[level(l) = i] ·
∑

`>j≥i

(
pl,j · 6 · 2`−j

)
≤ 6

∑
`>j≥1

pl,j2`−j
∑
i≤j

Pr[level(l) = i]

= 6
∑

`>j≥1

pl,j2`−j
∑
i≤j

2i

L
(4.10)

= 6
∑

`>j≥1

pl,j2`−j · 2j+1

L

≤ 6
t(Π, l)
r − 3

2`+1

L
(4.11)

where Equation 4.10 follows by equation 2.1 and Equa-
tion 4.11 follows from Equation 4.9. Summing over all
dissection lines l, the expected number of additional
crossing in ΠL at level ` from patching is:

E[c(ΠL, `)] =
∑
line l

6 · t(Π, l)
r − 3

· 2`+1

L

≤ 6 · E[c(Π, `)]
r − 3

≤ O(ε))E[(c(Π, `)]

where the second to the last inequality follows by
Equation 4.8.
New crossings from detours. A detour on a line at
level j < ` adds at most (L/2j · m)/L/2` = 2`−j)/m
new crossings to level ` boxes, where m = O(log n).
This follows as the length of the detour i.e the distance
between portals on a level j line is L/2j and there are
at least L/2` boxes along this detour distance. As the
number of detours taken at level j is at most E[(c(Π, j)]
we have that the number of additional crossings added
to level ` boxes from detours is

additional crossing from detours on Π

=
∑
j≤`

(# detours at level j) · 2`−j

m

≤
∑
j≤`

E[(c(Π, j)] · 2`−j

m

=
∑
j≤`

E[(c(Π, `)] · 2j−` · 2`−j

m
(4.12)

≤ O(log n)
E[c(Π, `)]

m
= E[c(Π, `)](4.13)

Equation 4.12 follows from two implications of Equation
4.8: E[c(Π, `)] = 2`+2/L

∑
line l t(Π, l) and E[c(Π, j)] =

2j+2/L
∑

line l t(Π, l). Equation 4.13 follows as there
are at most O(log n) levels, so O(log n) possible values
of j ≤ `.
Total crossings. The expected number of crossings
on the light tours at level ` is at most the original
crossing at level ` plus the additional crossings added
from patching and detours.

E[c(ΠL, `) ≤ E[c(Π, `)] + O(ε)E[c(Π, `)] + E[c(Π, `)]
= (2 + O(ε))E[c(Π, `)]

Proof. (Proof of Lemma 4.4) Combine Equations 4.7
and 4.8 to get E(c(Π, `)) ≤ 2`+3

L OPT. The Lemma
follows from the fact that a level ` box has side length
d` = L/2`.

5 Proof of Theorem 2.4

Let R denote the points marked red by Algorithm 1.
By Theorem 2.3 the 3-approximation on R has cost at
most Rad(R)+2TSP(R∪ o). Lemmas 5.1 and 5.2 show
in expectation both quantities are O(ε)OPT, proving
Theorem 2.4.

Lemma 5.1. In expectation over the random type as-
signment, Rad(R) = O(ε)OPT

Lemma 5.2. In expectation over the random dissection
and type assignment TSP(R ∪ o) = O(ε)OPT

We begin by listing some properties that will be useful
in proving Lemmas 5.1, and 5.2.

Let b be a level ` box containing points of type ` and
consider a segment S which is rounded in b by Algorithm
1. Let Sa denote the set of active points on S prior to
its rounding and let R be the interval of points labelled
type ` in S. Let |R| denote the number of points labelled
type ` and |Sa| the size of Sa.

Property 5.1. |R| ≤ |Sa| ·O(ε/ log n).

Proof. In the DP’s history S has a concatenation profile
Φ with its rounded flag set to true as S is a rounded
segment. Suppose S has x active points once it is
concatenated according to Φ. The DP counts S as
a rounded segment having exactly ti active points for
the unique threshold value ti lying in the interval
[x/(1 + ε/ log n), x]. To get exactly ti active points on
S at most x − ti ≤ x(ε/ log n) active points are set to
type `. Thus |R| ≤ xε/ log n while |Sa| = x.

Definition 5.1. (Length of interval) Denote the points
in R as r1, r2, . . . rd and the points in Sa as
s1, s2, s3, . . . sx. Let b1, b2 be the points on the bound-
ary of b where S enters and exits b. Thus S visits
s1 after entering at b1 and it visits sx before exiting
from b2. If R does not contain both s1 and sx then
length(R) =

∑d
i d(si, si+1), where d(u, v) is the dis-

tance between points u and v. Otherwise let re = sx,
then re+1 = s1 as Algorithm 3 wraps around and
length(R) =

∑e−1
i=1 d(si, si+1) + d(sx, b2) + d(b1, s1) +∑d

i=e+1 d(ri, ri+1).

Property 5.2. E[length(R)] ≤ length(Sa) ·O(ε/log n)

Proof. Let b1 and b2 be the points where S enters and
exits box b. Define zx = d(b1, s1) + d(sx, b2) and zi =
d(si, si+1), for 1 ≤ i < x. The length of Sa is

∑x
i=1 zi

and E[length(R)] =
∑x

i=1 zi Pr[zi is counted in R]. For
all i the probability that zi is counted is the probability
that si and its consecutive point3, si+1, are both
included in R. A point s ∈ Sa belongs to exactly
|R| intervals and the consecutive point of s appears in
|R| − 1 of these intervals. Thus the Pr[zi is counted] =
(|R|−1)/(|Sa|). Applying Property 5.1, E[length(R)] =∑x

i=1 zi(|R| − 1)/(|Sa|) = O (ε/log n)
∑x

i=1 zi, which
proves the property as

∑x
i=1 zi = length(Sa).

Property 5.3. A point s ∈ Sa is in R with probability
|R|/|Sa|.

Proof. Each point s ∈ Sa belongs to |R| intervals as
each interval consists of |R| consecutive points. There

3The consecutive point of sx is s1

are a total of |Sa| different intervals, each starting at a
different point in Sa and Algorithm 3 picks uniformly
among them.

5.1 Proof of Lemma 5.1 Recall that, Rad(R) =
2/k

∑
x∈R d(x, o), where d(x, o) is the distance of point

x from the depot. By Theorem 2.3 Rad(I) ≤ OPT,
so it is sufficient to show that Rad(R) ≤ O(ε)Rad(I).
Fix any level ` of the dissection and let R` be the
set of points which were assigned type `. We show
that in expectation Rad(R`) ≤ O(ε/ log n)Rad(I). The
proposition follows by linearity of expectation (over all
levels) since Rad(R) =

∑
level l Rad(R`).

Partition R` according to the tour segment it is
from: R1

` ⊂ S1, R
2
` ⊂ S2, . . . R

m
` ⊂ Sm where Rj

` is the
set of red points from tour segment Sj . By definition
we have that

(5.14) Rad(I) ≥ 2
k

m∑
j=1

∑
x∈Sj

d(o, x)

As R` is picked randomly, and by Properties 5.3 and
5.1, Pr[x ∈ Rj

`] ≤ O(ε/ log n), so we get

E[Rad(R`)] =
2
k

m∑
j=1

∑
x∈Sj

d(o, x) Pr[x ∈ Rj
`]

≤ 2
k

m∑
j

∑
x∈Sj

d(o, x) ·O(ε/ log n)

Combining this with Equation 5.14 we get
E[Rad(R`)] ≤ O(ε/ log n)Rad(I).

5.2 Proof of Lemma 5.2

Proof. Let R` be the points labeled type ` at level `. We
show E[TSP(R`∪{o})] ≤ O(ε/ log n)OPT which implies
Lemma 5.2 as the tours of {R`∪o} from all levels can be
pasted together at the depot to yield a tour of (R ∪ o).

Let B` be the boxes at level ` containing points of
R`. Consider the cost of TSP(R` ∪ o) in two parts: the
outside part, which is the cost to reach the boxes of B`

from the depot, and the inside costs, which is the cost of
visiting the red points inside the boxes of B`. To analyze
the outside cost, let C be a set of points containing
at least one portal from each box of B` such that the
minimum spanning tree, MST (C ∪ o) is minimized4.
The optimal tour of R` ∪ {o} is at most,
(5.15)
TSP (R` ∪ o) ≤ 2MST (C ∪ o) +

∑
b∈B`

inside cost of b

4C is used only for the analysis and does not need to be found
explicitly.

Figure 6: The shaded boxes are the boxes of B`. (a) Given

that OPT has at least 3 tours entering each box, OPT crosses

all non-trivial cuts at least 6 times. This is made explicit in

Equation 5.16. (b) The MST crosses all non-trivial cuts at least

once as expressed in Equation 5.17

Proposition 5.1 shows that the first term of 5.15 is
O(ε/ log n)OPT Proposition and 5.2 shows the same for
the second term, which proves the Lemma.

Proposition 5.1. In expectation over the random
shifted dissection, E[2MST (C ∪ o)] ≤ O(ε/ log n)OPT.

Proof. We show that, MST (C ∪ o) ≤
O(ε/ log n)OPTDP which implies the proposition
as OPTDP is at most (1 + O(ε))OPT by the structure
Theorem 2.2.

Consider the fully connected graph G with one
vertex for each point in C and one more for the
depot. Define the weight of an edge of G to be the
distance between the two vertices connected by that
edge. Consider the following linear program 5.16 with
value v on G.

(5.16)

v = min
x

(we ·xe) s.t.


∑

e∈δ(S) xe ≥ γ/4r ∀S ⊂ V

S 6= ∅
S 6= V

xe ≥ 0

As each b ∈ B` contains points labelled ` (i.e at least
γ rounded segments), OPTDP contains at least γ tour
segments crossing into b. See Figure 6. As each tour in
OPTDP is structured (and in particular light), there are
at least γ/4r tours entering b. Thus OPTDP has at least
γ/4r edges crossing any cut separating the depot from
a point in C. As v is the minimum cost way to have at
least γ/4r edges cross all such cuts, OPTDP ≥ v.

Now consider the linear program 5.17 which is the

Figure 7: The figure shows a box b ∈ B`. The white points have

type ` and were dropped. Proposition 5.3 shows that total length

of the white intervals (boxed segments) is small. Proposition

5.4 shows that the cost of connecting the white intervals to the

boundary is small (dashed lines).

IP relaxation of MST. Let v′ be its value on G.
(5.17)

v′ = min
x

(we · xe) s.t.


∑

e∈δ(S) xe ≥ 1 ∀S ⊂ V

S 6= ∅
S 6= V

xe ≥ 0

See Figure 6. Observe that for any solution x of 5.16,
x′ = x · 4r/γ is a solution for 5.17. As both linear
programs have the same objective, v · 4r/γ = v′. The
MST relaxation 5.17 is known to have integrality gap
at most 2 [23], so that v′ ≥ 1

2 · MST (C ∪ o). Thus we
have that

OPTDP ≥ v = v′ · (γ/4r) ≥ MST (C ∪ o) · (γ/8r)

Thus (8r/γ) · OPTDP ≥ MST (C ∪ o) and as 8r/γ =
o(ε/ log n), the Proposition is proved.

Now we analyze the inside cost.

Proposition 5.2. In expectation over the random dis-
section and the random type assignment the total inside
cost at level ` is at most O(ε/ log n)OPT.

Proof. The inside cost at level ` is the sum of the inside
costs of each box b ∈ B`. The contribution of box
b ∈ B`, is the sum the length of the intervals of type `
points inside b plus the cost of connecting these intervals
to the boundary of b. Proposition 5.3 shows that in
expectation over the random type assignment the sum
of the length of intervals of type ` points over all boxes
in B` is O(ε/ log n)OPTDP .

The type ` intervals inside each b ∈ B` must be
connected to each other and to the boundary of their
box. We refer to this as the total connection cost at
level ` and denote it as CC(`). CC(`) is the sum of
the length of the boundaries of each box b ∈ B` plus
the cost of connecting the type ` intervals inside each
b ∈ B` to the boundary of b. Proposition 5.4 shows that
CC(`) = O(ε/ log n)F (OPTDP). See Figure 7. This

proves the proposition as Lemma 4.1 and Corollary 4.1
imply that F (OPTDP) ≤ (1 + O(ε))OPT.

Proposition 5.3. In expectation over the random type
assignment the length of all intervals of type ` is
O(ε/ log n)OPTDP .

Proof. The main idea is to sum the lengths of intervals
of type ` over all boxes in B` boxes, use Property 5.2
and linearity.

Consider a box b ∈ B` and denote the set of its
type ` points as Rb . Partition the points in Rb accord-
ing to the segments of b they come from: r1 ⊂ s1, r2 ⊂
s2, . . . rm ⊂ sm such that rj is the set of points labelled
type ` from tour segment sj . By Property 5.2, in expec-
tation over the random type-assignment the length of rj

is at most O(ε/ log n) times the length of sj . By linear-
ity,

∑m
j E[length(rj)] ≤ O(ε/ log n)

∑m
j=1 length(sj).

Let OPTDP
b denote the projection of OPTDP inside box

b. OPTDP
b ≥

∑m
j=1 length(sj), and OPTDP is at least

the sum of OPTDP
b over all boxes b ∈ B`. This implies

that the total length of red intervals at level ` is at most
O(ε/ log n)OPTDP .

Proposition 5.4. The total connection cost for level `
is O(ε/ log n)F (OPTDP).

Proof. Let CC(`) denote the total connection cost at
level `, which is the cost of connecting the type `
intervals inside each b ∈ B` to the boundary of its box.
Focus on one box b ∈ B`. To simplify the analysis
we add in the length of the boundary of b which is 4d`

where d` is side length of a level ` box. As b is a rounded
box it has at least γ rounded tour segments. Partition
the segments of b into groups of size γ. This yields gb

groups: each containing exactly γ rounded segments.
Consider any group and let R′ be a set containing one
type ` point from each of the segments in the group.
As we have already added the entire boundary of b to
the connection cost, the additional cost to connect all
the type ` intervals in the group to the boundary of the
box is at most MST (R′) + d`/2. We bound MST (R′)
using the following bound for TSP [15][5]. (See [15] for
a proof).

Theorem 5.1. [15][5] Let U be a set of points in
two dimensional Euclidean space. Let dmax be the max
distance between any two points of U . Then TSP (U) =
O(dmax

√
|U |)

In our context, dmax = d`, and U = R′. Since
|R′| = γ, |U | = γ. By Theorem 5.1 we have that
MST (R′) + d` = O(d` ·

√
γ). This holds for each of

the gb groups of rounded segments thus we have that

the total contribution of box b to the connection cost is
gb ·O(d` ·

√
γ) + 4d` = O(gb · d` ·

√
γ). Summing up the

contribution of each box b ∈ Bl we have that the total
connection cost at level ` is,

(5.18) CC(`) =
∑
b∈B`

O(gb ·d` ·
√

γ) = O(d` ·
√

γ)
∑
b∈B`

gb

Each rounded tour segment in level ` has two
crossings with the boundary of a level ` dissection box,
thus: c(ΠDP , `) ≥ 2γ

∑
b∈bl

gb, where ΠDP are the tours
of OPTDP . Using Equation 5.18,

(5.19) O (d`/
√

γ) · c(ΠDP , `) ≥ CC(`)

For objective function F , (defined in 2.2), we have
(log n/ε)·F (OPTDP) ≥ c(ΠDP , `)d`. Substituting it for
c(ΠDP , `)d` in Equation 5.19 we get, O(1/

√
γ)(log n/ε) ·

F (OPTDP) ≥ CC(`). As γ = log4 n/ε4 this reduces
to O(ε/log n) · F (OPTDP) ≥ CC(`), which proves this
Proposition.

6 Derandomization

Arora’s dissection can be derandomized by trying all
choices for the shifts a and b. More efficient deran-
domizations are given in Czumaj and Lingas and in
Rao and Smith [9, 20]. As for the randomized type
assignment Algorithm 3, to guarantee that the cost
of the dropped points is small, when selecting an in-
terval Y to drop from a segment S, we only need to
pick Y such that (1) Rad(Y) ≤ O(ε/ log n)Rad(S) and
(2)length(Y) ≤ O(ε/ log n)length(S). In Lemma 5.1
and Property 5.2 we prove that these two conditions
hold at the same time, in expectation when Y is cho-
sen by first selecting a point uniformly from S and then
selecting the next |Y | − 1 consecutive points. To deran-
domize we can test the at most |S| intervals of length
|Y | in S, (each starting from a different point in S), and
select any interval that satisfies these two conditions.

7 Acknowledgments

We like to thank Shay Mozes his close reading of our
paper and for pointing out corrections.

References

[1] A. Adamaszek, A. Czumaj, and A. Lingas.
PTAS for k-tour cover problem on the plane
for moderately large values of k. CoRR. 2009.
http://arxiv.org/abs/0904.2576

[2] S. Arora. Polynomial-time approximation schemes for
Euclidean TSP and other geometric problems. JACM,
45(5):753-782, 1998.

[3] S. Arora. Approximation schemes for NP-hard geo-
metric optimization problems: A survey. Mathematical
Programming, 97 (1,2) July 2003.

[4] S. Arora and G. Karakostas. Approximation schemes
for minimum latency problems. Proceedings of the
thirty-first annual ACM symposium on Theory of
computing. pages 688–693. 1999.

[5] T. Asano, N. Kathoh, H. Tamaki, T. Tokuyama.
Covering Points in the plane by CVRP: towards a
polynomial time approximation scheme for general k.
STOC 1997.

[6] T. Asano, N. Katoh, H. Tamaki, and T. Tokuyama.
Covering points in the plane by k-tours: a polynomial
approximation scheme for fixed k. IBM Tokyo Research
Laboratory Research Report RT0162, 1996.

[7] G. Borradaile, P. Klein, and C. Mathieu. A polynomial
time approximation scheme for Euclidean Steiner for-
est. Proceedings of the forty-ninth annual IEEE Sym-
posium on Foundations of Computer Science, pp. 115-
124. 2008.

[8] G. Clarke, and J.V.Wright. Scheduling of vehicles
from a central depot to a number of delivery points,
Operations Research 12 (1964), pages 568581.

[9] A. Czumaj and A. Lingas. A polynomial time ap-
proximation scheme for Euclidean minimum cost k-
connectivity. Proceedings of 25th Annual International
Cololoquium on Automata, Languages and Program-
ming, LNCS, Springer Verlag 1998.

[10] Dantzig, G.B.; Ramser, J.H. The Truck Dispatching
Problem. Management Science 6 (1): 80-91. (1959).

[11] B.E. Gillett, and L.R. Miller. A heuristic algorithm for
the vehicle dispatch problem, Operations Research 22
(1974), pages 340349.

[12] M.L. Fischer. Vehicle Routing. in Network Routing,
Handbooks in Operations Research and Management
Science, 8, Ball, M. O., T. L. Magnanti, C. L. Monma
and G. L. Nemhauser (Eds.), Elsevier Science, Amster-
dam, 1-33, 1995.

[13] M.L. Fisher, and R. Jaikumar. A generalized assign-
ment heuristic for the vehicle routing problem, Net-
works 11 (1981), 109124.

[14] Golden, Bruce; Raghavan, S.; Wasil, Edward (Eds.)
The Vehicle Routing Problem: Latest Advances and
New Challenges. Operations Research/Computer Sci-
ence Interfaces Series, Vol. 43. 2008.

[15] M. Haimovich and A.H.G Rinnooy Kan. Bounds and
heuristic for capacitated routing problems. Mathemat-
ics of Operations Research, 10(4), 527-542, 1985.

[16] S. Kolliopoulos and S. Rao. A nearly linear-time ap-
proximation scheme for the Euclidean k-media prob-
lem. SIAM J. Comput., 37(3):757782, 2007.

[17] G. Laporte. What you should know about the vehicle
routing problem. Naval Research Logistics, vol 54, issue
8. pages 811-819. 2007.

[18] R.C. Larson and A.R. Odoni. Urban Operations Re-
search. Prentice Hall, NJ. 1981.

[19] J. Mitchell. Guillotine subdivisions approximate polyg-
onal subdivisions: A simple polynomial- time approxi-

mation scheme for geometric TSP, k-MST, and related
problems. SIAM J. Comput., 28(4):12981309, 1999.

[20] S. Rao and W. Smith. Approximating geometrical
graphs via “spanners” and “banyans”. In 30th STOC,
pages 540-550, 1998.

[21] J. Remy and A. Steger. A quasi-polynomial time ap-
proximation scheme for minimum weight triangulation.
Proceedings of the 38th ACM Symposium on Theory
of Computing, pages 316–325. 2006.

[22] Paolo Toth, Daniele Vigo. The vehicle routing prob-
lem. Society for Industrial and Applied Mathematics.
Philadelphia, PA. 2001.

[23] Approximation Algorithms. Vijay Vazirani. Chapter
20. Berlin: Springer. 2003.

[24] http://neo.lcc.uma.es/radi-aeb/WebVRP/

