anhydrous salt to be 208.3 g . Using Equation 2, determine the number of moles of the anhydrous salt.

Equation 2

Number of moles of anhydrous salt after heating, mol =

From the mass of water lost, calculate the number of moles of water present in the original sample of the hydrate, using Equation 3.

Equation 3

$$
\begin{aligned}
& \text { Number of moles of water lost = } \\
& \begin{array}{l}
=\frac{1}{1} \text { mass of water lost, } \mathrm{g} \\
=\frac{10.190 \mathrm{~g}}{1} \mathrm{~mol} \text { water } \\
=1.05 \square 10^{\square 2} \mathrm{~mol} \text { water water }
\end{array}
\end{aligned}
$$

Using Equation 4, determine the water of hydration by comparing the number of moles of water with the number of moles of anhydrous salt.

Equation 4

Waters of hydration =

$$
\begin{aligned}
& =\frac{-1.05 \square 10^{\square 2} \mathrm{~mol} \text { water }}{-5.09 \square 10^{\square 3} \mathrm{~mol} \mathrm{BaCl}_{2}} \\
& =2.06 \square 2
\end{aligned}
$$

Thus, the formula of the hydrate that we analyzed is $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

