
On Hierarchical Diameter-Clustering and the

Supplier Problem

Aparna Das and Claire Kenyon-Mathieu

Brown University, Providence RI 02918, USA

Abstract. Given a data set in a metric space, we study the problem of
hierarchical clustering to minimize the maximum cluster diameter, and
the hierarchical k-supplier problem with customers arriving online.
We prove that two previously known algorithms for hierarchical cluster-
ing, one (offline) due to Dasgupta and Long and the other (online) due
to Charikar, Chekuri, Feder and Motwani, output essentially the same
result when points are considered in the same order. We show that the
analyses of both algorithms are tight and exhibit a new lower bound
for hierarchical clustering. Finally we present the first constant factor
approximation algorithm for the online hierarchical k-supplier problem.

1 Introduction

Clustering is the partitioning of data points into disjoint clusters (or groups)
according to similarity [1, 9]. For example if the data points are books, a 2-
clustering might consist of the clusters fiction, and non-fiction. In this way clus-
tering can provide a concise view of large amounts of data. In many application
domains it is useful to build a partitioning of the data that starts with broad
categories which are gradually refined thus allowing the data to be viewed si-
multaneously at different levels of conciseness. This calls for a hierarchical or
nested clustering of the data where clusters have subclusters, these have sub-
subclusters, and so on. For example a hierarchical clustering might first separate
the books into clusters fiction and non-fiction, then separate the fiction cluster
into classics and non-classics and the non-fiction cluster into math, science and
history, and so on. More formally, a hierarchical clustering of n data points is
a recursive partitioning of the points into 1, 2, 3, 4, . . . , n clusters such that the
(k+1)th clustering is obtained by dividing one of the clusters of the kth cluster-
ing into two parts, thus making the clustering gradually more fine-grained ([5],
Section 10.9). This framework has long been popular among statisticians, biol-
ogists (particularly taxonomists) and social scientists [10].

A criterion commonly used to measure of the quality of a clustering is the
maximum cluster diameter, where the diameter of a cluster is the distance be-
tween the two farthest points in the cluster. The goal is to find clusterings which
minimize the maximum cluster diameter, thus similar points are placed in the
same cluster while dissimilar points are separated. In this paper, we focus on the
hierarchical diameter-clustering problem: finding a hierarchical clustering where
the value of the clustering is the maximum cluster diameter.

Every associated k-clustering of the hierarchical clustering should be close to
the optimal k-clustering, where the optimal k-clustering is the one that minimizes
the maximum cluster diameter. The competitive ratio of a hierarchical clustering
algorithm A is the supremum, over n and over input sets S of size n, of the
quantity maxk∈[1,n] Ak(S)/OPTk(S), where OPTk(S) is the value of the optimal
k-clustering of S and Ak(S) is the value1 of the k-clustering constructed by
algorithm A. Thus a hierarchical clustering algorithm with a small competitive
ratio, produces k-clusterings which are close to the optimal for all 1 ≤ k ≤ n.

The hierarchical diameter-clustering problem was studied in work by Das-
gupta and Long [4] and by Charikar, Chekuri, Feder and Motwani [2]. A simple
and commonly used algorithm for this problem is the greedy “agglomerative”
algorithm [5], which starts with n singletons clusters and repeatedly merges the
two clusters whose union has smallest diameter. However, it is proved in [4]
that this algorithm has competitive ratio Ω(log k). The authors then propose
a better, constant-factor algorithm, inspired by the “divisive” k-clustering al-
gorithm of Gonzalez [6]. The algorithm proposed in [2] is instead ”coalescent”
and may be partially inspired by a k-clustering algorithm by Hochbaum and
Shmoys [8]. Superficially, the hierarchical k-clustering algorithms presented in
the two papers look quite different. Quoting [4]: “the earlier work of [2] uses
similar techniques for a loosely related problem, and achieves the same bounds”.
Indeed, both papers present a 8 competitive deterministic algorithm and a 2e
competitive randomized variant. Additionally, the algorithm from [2] focuses on
online clustering, where points arrive one by one in an arbitrary sequence. We re-
fer to the algorithm from [2] as the tree-doubling algorithm and to the algorithm
from [4] as the farthest algorithm. Here are the main results from [4, 2].

Theorem 1. For the hierarchical diameter-clustering problem,
The farthest algorithm is 8-competitive, in its deterministic form and 2e-competitive
in its randomized form [4].
The tree doubling algorithm is 8-competitive, in its deterministic form and 2e-
competitive in its randomized form [2].

Our first contribution is to formally relate the two algorithms. Their spec-
ification contains some non-deterministic choices: the farthest algorithm starts
from an arbitrary point, and the tree-doubling algorithm considers the points in
arbitrary order. Assuming some conditions which remove the non-determinism,
we prove that both in the deterministic and in the randomized cases the cluster-
ing produced by the farthest algorithm is always a refinement of the clustering
produced by the tree-doubling algorithm, where refinement is defined as follows:

Definition 1. A partition F1, F2, . . . Fl is a refinement of a partition D1, D2, . . . Dk

iff ∀i ≤ l, ∃j ≤ k such that Fi ⊆ Dj.

The farthest clustering is a refinement and not equivalent to the tree doubling
clustering because the farthest algorithm always outputs a k-clustering with

1 If A is randomized, then Ak(S) should be replaced by E(Ak(S)).

exactly k clusters, where as the tree doubling algorithm outputs one with at
most k clusters.

Theorem 2. (Refinement) Assume that the first two points labeled by the
farthest algorithm have distance equal to the diameter of the input. Also assume
that the tree-doubling algorithm considers points in the order in which they were
labeled by the farthest algorithm. Moreover, in the randomized setting, assume
that the two algorithms choose the same random value2 r.

Then, for every k, the k-clustering produced by the farthest (deterministic
or randomized) algorithm is a refinement of the k-clustering produced by the
tree-doubling (deterministic or randomized) algorithm.

With this interpretation, we see that the competitive ratio of the farthest al-
gorithm can be seen as a corollary of the competitive ratio of the tree-doubling
algorithm. Could it be that the farthest algorithm is actually better? We an-
swer this question in the negative by proving that the analysis of the farthest
algorithm in [4] is tight.

Theorem 3. (Tightness) The competitive ratio3 of the deterministic farthest
algorithm is at least 8.

This means that the 8 competitive ratio upper bound for the farthest algo-
rithm is tight, and, by the refinement theorem, the 8 competitive ratio upper
bound for the tree-doubling algorithm is also tight. Proving tightness of the
randomized variants are open.

Can the competitive ratio be improved? We turn to the question of what is
the best competitive ratio achievable for any hierarchical clustering algorithm
with no computational restrictions. In other words, what is the best we can
expect from a hierarchical clustering algorithm if it is allowed to have non-
polynomial running time? We prove that no deterministic algorithm can achieve
a competitive ratio better than 2, and no randomized algorithm can achieve
competitive ratio better than 3/2. (Note that the lower bounds proved in [2]
apply to the online model only and thus are incomparable to our lower bounds.)

Theorem 4. (Hierarchical lower bound) No deterministic (respectively ran-
domized) hierarchical clustering algorithm can have competitive ratio better than
2 (respectively better than 3/2), even with unbounded computational power.

How general are these techniques? In our final contribution, we extend the
tree-doubling algorithm to design the first constant factor approximation algo-
rithm for the online hierarchical supplier problem.

In the standard (offline, non hierarchical) k-supplier problem, we are given
a set S of suppliers and a set C of customers and the distances between all

2 The significance of parameter r will be explained in Section 2.
3 Charikar et al. [2] present a lower bound of 8 for their clustering algorithm, however

it applies to the online setting but not to the hierarchical setting and does not extend
to the tree-doubling algorithm.

customer-supplier pairs. We wish to select a set Sk of k suppliers and an assign-
ment of each customer c to a supplier f(c) in Sk so as to minimize the maximum
distance from any customer to its supplier, maxc∈C d(c, f(c)). For example the
task of segmenting customers into a small number, k, market segments can be
modeled as a k-supplier problem where the suppliers are a set of fixed templates
representing different markets and the goal is to match markets to customers
based on their buying patterns (the distance measure). A 3-approximation algo-
rithm for the k-supplier problem is mentioned in [7].

In the more difficult online hierarchical setting, the set S of suppliers is known
in advance but new customers arrive as time goes on, so C is a sequence of cus-
tomers. When a new customer arrives, it is either assigned to one of the existing
open suppliers, or a new supplier is opened to serve this customer. If opening
a new supplier results in more than k open suppliers then two existing open
suppliers merge their customer lists, and one of them closes. This requirement
ensures that the hierarchical condition is satisfied, i.e that Si−1 ⊆ Si and that
for each supplier s ∈ Si \Si−1, all the customers assigned to s are assigned to the
same supplier in Si−1. For example, suppose customers arrive over time to use
resources and we would like to dynamically increase/decrease the total number
of resources allocated without having to do extensive recomputation. Using the
hierarchical supplier solution, this only requires splitting/merging the customers
currently assigned to one of the resources. The online hierarchical model is an
increasingly important framework for clustering problems, where there is a re-
quirement to gather and categorize large amounts of data on the fly (see [12] for
example).

Using the tree-doubling algorithm as a subroutine, we obtain a constant-
factor approximation algorithm for the online hierarchical supplier problem.
(Note that in the offline case, we could equivalently have used the farthest algo-
rithm as a subroutine. In fact, we conjecture that in the offline case, a similar
result may also be obtainable using methods from [3, 11].)

Theorem 5. (Online hierarchical supplier) For the online hierarchical k-
supplier problem, there exists a deterministic 17-approximation algorithm and a
randomized (1 + 4e) = 11.87-approximation algorithm.

2 Review of the hierarchical clustering algorithms

2.1 The Farthest Algorithm from [4]

The input is a set of n points {x1, . . . xn} with associated distance metric d. The
algorithm has three main steps:

Labeling the points. Take an arbitrary point and label it 1. Give label i for
i ∈ {2, . . . , n}, to the point which is farthest away from the previously labeled
points. Let di denote the distance from i to the previous i− 1 labeled points, i.e
di = min1≤j≤i−1 d(i, j). Thus d2 = d(1, 2).

Assigning levels to labelled points. For labelled point 1, set level(1) = 0.
For labelled point i ∈ {2, . . . , n}, set level(i) = ⌊log2(d2/di)⌋ + 1.

Organizing labelled points into a tree. Organize the points into a tree
referred to as the Π ′-tree. Place point 1 as the root of the Π ′-tree. For each
point i ∈ {2, . . . , n}, define its parent, π′(i), to be the point closest to i among
the points with level strictly less than level(i). Later, in order to compare the
farthest algorithm with the tree doubling algorithm we set a specific tie breaking
scheme for choosing the parent for a node. Insert points i > 1 into the Π ′-tree
in order of increasing levels connecting each point i with an edge to its parent
π′(i).

The hierarchical clustering is represented implicitly in the Π ′-tree. To obtain
the k-clustering (of the hierarchical clustering) remove edges (i, π′(i)), for i ∈
{2, . . . , k} from the Π ′-tree. Deleting these k − 1 edges splits the Π ′-tree into k
connected components such that points {1, . . . , k} are in separate components.
The components are returned as the k clusters.

It is easy to verify that this defines a hierarchical clustering, and [4] proves
that it satisfies the following properties. The distances (di)i are a monotone
non-increasing sequence, and the levels (level(i))i are a monotone non-decreasing
sequence. The definition of levels imply the following bounds on di.

d2/2level(i) < di ≤ d2/2level(i)−1 . (1)

In addition [4] proves that:

d(i, π′(i)) ≤ d2/2level(i)−1 . (2)

Charikar et al. [4] also present a randomized variant of the farthest algo-
rithm, where the only difference is in the definition of levels. A value r is chosen
uniformly at random from the interval [0, 1], and the levels are now defined by:
level(1) = 0 and level(i) = ⌊ln(d2/di) + r⌋ + 1. The monotonicity properties are
unchanged; and the two inequalities are replaced by the following.

erd2/elevel(i) < di ≤ erd2/elevel(i)−1 and d(i, π′(i)) ≤ erd2/elevel(i)−1 . (3)

2.2 The Tree-Doubling Algorithm from [2]

Here the input consists of a sequence of n points {x1, . . . xn} with associated
distance metric d. Let ∆ denote the diameter of the points. The algorithm con-
siders the points one by one in an online fashion and maintains a certain infinite
rooted tree which we refer to as the T + tree. Each node in T + is associated to a
point, and the set of nodes associated to the same point forms an infinite path
in the tree. The first point is placed at depth 0 as the root of T +, and a copy of
this point is placed at each depth d > 0 along with a parent edge to the copy at
depth d − 1. When a new point p arrives it is inserted at a depth dp, as defined
by the insertion rule given below. A copy of p is placed at each depth d > dp

with a parent edge to the copy of p at depth d − 1.

(Insertion rule) Find the largest depth d with a point q such that dist(p, q) ≤
∆/2d. Point p is inserted into depth dp = d + 1 with a parent edge to q.

To obtain a k-clustering, find the maximum depth d in T + which has at most
k nodes. Delete all tree nodes at depth less than d. This leaves ≤ k subtrees
rooted at the points at depth d. Delete all multiple copies of points from the
subtrees and return these as the clusters.

By [2], the following properties are maintained as nodes are added to T + :

Property 1. (Close-parent property) Points at depth d are at distance at
most ∆/2d−1 from their parents.

Property 2. (Far-cousins property) Points at depth d are at distance greater
than ∆/2d from one another.

Charikar et al. [2] also presents a randomized variant, where the only dif-
ference is in the insertion rule. A value r is chosen uniformly at random from
the interval [0, 1], and the insertion rule is now: Find the largest depth d that
contains a point q such that dist(p, q) ≤ er∆/ed. Point p is inserted into depth
dp = d + 1 with a parent edge to q.

The properties are replaced by the following.

Property 3. Points at depth d are at distance at most er∆/ed−1 from their par-
ents , and at distance greater than er∆/ed from one another.

3 Proof of the Refinement Theorem

3.1 Proof of the Deterministic Version

To relate the farthest and tree doubling algorithms we first make some assump-
tions about their nondeterministic choices. The farthest algorithm starts its la-
belling at an arbitrary point. We will assume the first point labelled by the
farthest algorithm is at distance ∆ from the second point labelled by the algo-
rithm and thus d2 = ∆. The tree doubling algorithm receives its input points in
an arbitrary order. We assume that points arrive to the tree-doubling algorithm
in the order they are labeled by the farthest algorithm. Lastly we assume that
ties are broken in the same way by the two algorithms. Specifically if points q, q′

are tied to be a parent, the point with the larger label (in the farthest algorithm)
or the point which arrived first (in the tree doubling algorithm) is favored.

Our proof is based on the alternative construction of the tree doubling T +

tree, given in algorithm 1, which builds a tree T based on the farthest algorithm’s
Π ′ tree. We prove that our construction is consistent with the tree doubling
algorithm’s insertion rule and hence T could have legitimately been constructed
by the tree-doubling algorithm. Finally we argue that the k-clustering defined
by the Π ′ tree is a refinement of the k-clustering defined by T . Given the Π ′ tree
of the farthest algorithm, the following algorithm constructs a T + tree. Fig. 1
shows the Π ′ tree and the corresponding tree T constructed by algorithm 1.

Algorithm 1: Given Π ′ construct T +

(1) Let T be an empty tree
(2) Let ℓ = the maximum level of the points in Π ′

(3) For each level i = 0, . . . ℓ

(4) Let Li denote the points with level i

(5) Let S = L0 ∪ L1 ∪ . . . ∪ Li

(6) Insert each p ∈ S at depth i of T with an edge to:
(7) The copy of π′(p) at depth i − 1, if level(p) = i or
(8) The copy of p at depth i − 1, if level(p) 6= i

(9) Return T

Let T be the tree constructed by Algorithm 1.

1

2

3 4 LEVEL 3

LEVEL 2

LEVEL 1

LEVEL 0

LEVEL 4

LEVEL 3

LEVEL 2

LEVEL 1

LEVEL 0

LEVEL 4

1

4 3

2

2

2

2

1

1

4 31

1

Fig. 1. The Π ′-Tree is shown on the left and the T+ Tree is shown on the right.

Lemma 1. T satisfies the close-parent property.

Proof. Let p be any point at depth d in T .
If d 6= level(p), then by step (8) of algorithm 1, the parent of p in T is the

copy of p at depth d− 1. Thus the close parent property follows trivially in this
case since d(p, p) = 0.

Otherwise, d = level(p). By step (7) of algorithm 1 parent(p) = π′(p). Apply-

ing equation 2 with d2 = ∆, we have that, d(p, π′(p)) ≤ ∆/2level(p)−1. Substi-
tuting level(p) = d and π′(p) = parent(p), we get: d(p, parent(p)) ≤ ∆/2d−1. ⊓⊔

Lemma 2. T satisfies the insertion rule.

Proof. By steps (3-6) of algorithm 1 if level(p) = d, then p appears in T for the
first time at depth d and its parent q is π′(p).

Since level(π′(p)) < level(p), a copy of π′(p) must be at depth d − 1 in T .
Since T satisfies the close-parent property, d(p, π′(p)) ≤ ∆/2d−1. Thus π′(p) is
qualified (distance-wise) to be the parent of p according to the insertion rule.

To show that insertion rule is satisfied we need to show that when p first
arrives, there was no other point at a depth higher than d − 1 which was close
enough to p to be its parent. Let q′ be any point at depth j > d − 1, which

arrived before p. Note that q′ ∈ {1, . . . , p− 1} since by assumption points arrive
in the order they are labelled by the farthest algorithm. We need to show that
d(p, q′) > ∆/2j. Note that by definition of dp, d(p, q′) ≥ minj∈[1,p−1] d(p, j) = dp.
Using the fact that level(p) = d and equation 1 with d2 = ∆ we get

dp > ∆/2level(p) = ∆/2d .

Combining the two statements above we have that

d(p, q′) ≥ dp > ∆/2d ≥ ∆/2j ,

where the last inequality follows since j > d − 1 ⇒ j ≥ d. Since d(p, q′) > ∆/2j

point q′ cannot be parent of p. ⊓⊔

We have shown that T satisfies the insertion rule and thus it can be constructed
by the tree-doubling algorithm when the assumptions of Theorem 2 hold. Thus
for the rest of the proof assume that the tree doubling algorithm constructs T .

Given k, the farthest algorithm removes exactly k − 1 edges from the Π ′

tree and returns a clustering F (k) with exactly k clusters. The tree-doubling
algorithm looks for the deepest level of the T tree with at most k nodes and thus
returns a clustering D(k) with ≤ k clusters. We first show the two clusterings
D(k) and F (k) are equivalent when they both have exactly k clusters. The
refinement property then follows easily.

Lemma 3. Let k be such that the tree doubling tree T has a depth d with exactly
k vertices, then the clusterings F (k) and D(k) are the same.

Proof. Let F1, . . . Fk be the clusters returned by the farthest algorithm, where
Fi contains point i. Let D1, . . .Dk be the clusters returned by the tree-doubling
algorithm, where the cluster are defined by the k points at depth d in T . Since
depth d contains exactly k vertices, the monotonicity of (level(i))i implies that
these points must be exactly the points 1, . . . , k. We will show that for any
1 ≤ i ≤ k if a point, x, is in Di then x ∈ Fi. Since the k-clustering is a partition
of the points, this immediately implies that Di = Fi for all 1 ≤ i ≤ k.

Let x be a point in Di. Since Di contains the points in the subtree un-
der i, there is a i-to-x path P = (i = p1, p2, . . . pl = x) in T . Let S = (i =
s1, s2, . . . sm = x) be the sequence of points obtained by deleting all repetitions
of points from P . By the construction of T we have that sj = π′(sj+1) for all
1 ≤ j ≤ m which implies that S is a valid i-to-x path in the Π ′-tree. Since depth
d of T contains all points in {1, . . . , k}, only point i can appear in sequence S.
Thus none of the points {1, . . . , k} except i are in the i-to-x path in Π ′ tree.
This implies that x ∈ Fi. ⊓⊔

Corollary 1. Let k1 be an input such that D(k1) has strictly less than k1 clus-
ters. Let k2 be the minimum input such that k2 > k1 and D(k2) has exactly
k2 clusters. Then D(k1) � F (k1) � D(k2), where A � B stands for “B is a
refinement of A”.

Proof. Let k < k1 be the number of clusters in D(k1). Thus D(k1) = D(k)
and T has a level with exactly k vertices. By Lemma 3, F (k) = D(k). By
definition of a hierarchical clustering, F (k) � F (k1) as k < k1. Thus we have
D(k1) = D(k) = F (k) � F (k1).

Similarly, on input k2, the tree-doubling algorithm produces a clustering with
exactly k2 clusters which implies that T has a level with exactly k2 vertices. By
Lemma 3, F (k2) = D(k2). By definition of a hierarchical clustering, F (k1) �
F (k2) as k1 < k2. Thus we have F (k1) � F (k2) = D(k2). ⊓⊔

3.2 Proof of the Refinement Theorem, Randomized Version

Suppose the random parameter r in the randomized versions of the farthest and
the tree-doubling algorithms is chosen to have the same value. Then Lemma 3
and Corollary 1 also apply to the randomized algorithms. The only change to
the analysis is to use inequalities (3) instead of inequalities (2) and (1) in the
proof of correctness for algorithm 1.

3.3 Nondeterministic Choices

To prove the refinement theorem, we made some assumptions about the nonde-
terministic choices of the two algorithms. But how much do these choices affect
the performance of the algorithms?

The first point chosen by the farthest algorithm determines the value of d2

and this in turn determines the level threshold of the Π ′ tree, i.e level one
contains the points which are at distance [d2, d2/2) from previously labelled
points and level two contains points which are at distance [d2/2, d2/22) from
previously labelled points and so on. The initial point can affect the performance
of the farthest algorithm by a factor up to 8 as demonstrated on the example
we present in Section 4, Fig. 2. On this example when the farthest algorithm
chooses initial point p1 it outputs a 5-clustering which has cost arbitrarily close
to 8OPT. However the optimal 5-clustering can be obtained if p4 is chosen as
the initial point.

Points arrive to the tree doubling algorithm in an arbitrary order. How much
can the ordering of points affect the performance of the tree doubling algorithm?
By the refinement theorem, if points arrive in the order labelled by the farthest
algorithm, there is always a way to break ties so that the tree doubling clustering
is no better than the farthest clustering. However the arrival order of points can
help the tree doubling algorithm perform better than the farthest algorithm.
We demonstrate this on the tight example presented in 4, Fig. 2. If the points
arrive as labelled by the farthest algorithm, the tree doubling and the farthest
5-clustering have cost 8OPT, while if the order starts with p2, p5, p

′
5, then tree

doubling can construct the cost 2OPT, 5-clustering:

{

(

p2

)

,
(

p3

)

,
(

p′3
)(

p1, p4, p5, q1 . . . qn

)

,
(

p′1, p
′
4, p

′
5, q

′
1 . . . q′n

)

}

.

Combining these observations, we see that the farthest algorithm can produce
clusterings which are 8 times better than the tree doubling algorithm clusterings
if the farthest algorithm starts with the best possible initial point and the tree
doubling is given its points in the worst possible ordering. On the other hand
the tree doubling clusterings can be 4 times better than the farthest clusterings
when its points are ordered favorably and the farthest algorithm starts at the
worst possible initial point.

4 Proof of the Tightness Theorem

We will prove that, for any ǫ > 0, there exists an input on which the farthest
algorithm produces a hierarchical clustering where the k = 5 clustering is worse
than the optimal 5-clustering by a factor of at least 8 − 4ǫ.

Choose any ǫ > 0 and let n = ⌈2 log(1/ǫ)⌉. The input set S will have 2n +
9 points; nine standard points, p1, p

′
1, p2, p3, p

′
3, p4, p

′
4, p5, p

′
5, and 2n additional

points q1, q
′
1, q2, q

′
2, . . . qn, q′n with distance as shown in Fig. 2. Note that the

distance from qi to qi+1 and the distance from p1 to qi for i ∈ [1, n − 1] is 1/2i

and the same holds for the distance from q′i to q′i+1 and the distance from p′1 to
q′i.

. ..
. ..

1

4

4

2

1/2

2

1/21
2

1

1/21

4

4

2

1/2

q2p5

1/2n−1

1/2i−1

2 + ǫ

p′

1

q′

1
q′

2
q′

n

1/2n−11/2i−1

1/2i−1

1/2n−1

2 + ǫ

p2

p3 qn
1/2i−1 1/2n−1

qi

p1

p′

5
q′

ip′

3

p′

4

p4 q1

Fig. 2. Graph for Tight Example

It is easy to verify that the optimal 5-clustering of S is:

{

(

p1, p5, q1, q2 . . . qn

)

,
(

p′1, p
′
5, q

′
1, q

′
2, . . . , q

′
n

)

,
(

p2

)

,
(

p3, p4

)

,
(

p′3, p
′
4

)

}

where clusters
(

p3, p4

)

and
(

p′3, p
′
4

)

have the largest diameter of 2+ ǫ = OPT(5).

We carry out the steps of farthest algorithm and show that its 5-clustering
can have a cluster of diameter 16 − (2/2n−1). The algorithm starts with point
p1 and obtains the ordering: p1, p

′
1, p2, p3, p

′
3, p4, p

′
4, p5, p

′
5, q1, q

′
1, . . . qn, q′n. Thus

d(p1, p
′
1) = 16 = ∆ is used to define the levels for the points. The algorithm

connects point p 6= p1 to its parent π′(p), the closest point to p at a strictly
lower level. The resulting Π ′-tree is shown in Fig. 3.

4

2

1

1

816

4

1/22

1/24

4

1/2i−1 1/2n−1

1/2i−1 1/2n−1
qi

p1 p′

1
p2

p′

4
p′

5
q′

1
q′

2
q′

i
q′

n

qnq2q1p5p4

p′

3

p3

Fig. 3. Π-Tree for Tight Example

To obtain a 5-clustering, the algorithm removes edges (pi, π
′(pi)) for pi ∈

{p′1, p2, p3, p
′
3} which yields the clustering:

{

(

p1

)

,
(

p′1
)

,
(

p3

)(

p′3
)

,
(

p4, p5, q1 . . . qn, p2, p′4, p
′
5, q1 . . . q′n,

)

}

The diameter of the last cluster is the distance from qn to q′n which is 16 −
2/2n−1 = 16 − 4ǫ2 = (8 − 4ǫ)OPT(5). This proves the Tightness theorem.

5 Proof of the Hierarchical Lower Bound Theorem

We demonstrate an input set S on which every deterministic algorithm obtains
a competitive ratio at least 2 and every randomized algorithm obtains a compet-
itive ratio at least 1.5. S has points pij for i, j ∈ [1, 4] and i 6= j with distances,
d(pij , pji) = 1 and d(pij , pik) = 2 as shown in Fig. 4. 4 It is easy to verify
that the optimal 6-clustering consists of the six pairs pijpji each of diameter 1.
Let Bi = {pij |j ∈ [1, 4], i 6= j}. Observe that Bi for i ∈ [1, 4] is the optimal
4-clustering with each cluster having diameter 2.

5.1 The deterministic Lower Bound

Let A be any deterministic hierarchical clustering algorithm.

4 The input set S is also used in [2] to derive a lower bound for the online setting,
but the edge weights (distances) are different. The lower bound from [2] is an adver-
sarial argument where the choice of the next arriving points depends on the current
clustering and so it does not extend to the offline setting.

21

23

24

13

14

12 31

32

34

42

41

43

2 2
2 2

1

1

1

1

1
1

2

2

2

2

2

2

2

2

Graph of Points

14

41

24

42

23

32

12

21

13

31

Optimal 6−Clustering

42

41

43

31

32

34

21

23

24

12

13

14

Optimal 4−Clustering

Fig. 4. Lower Bound Example

Case 1: Suppose A produces the optimal 6-clustering. Then A’s clusters
must be the 6 pairs pijpji. Since A is a hierarchical clustering algorithm, it must
merge some of these pairs to obtain the 4-clustering. Merging any two of these
pairs results in a cluster of diameter 4, giving us a competitive ratio of at least
A(4)/OPT(4) = 4/2 = 2.

Case 2: Suppose A does not produce the optimal 6-clustering. Then some
cluster in A’s 6-clustering consist of points other than some pair pijpji. This
cluster must have diameter ≥ 2. Thus the competitive ratio for A is at least
A(6)/OPT (6) ≥ 2/1 = 2.

5.2 The randomized Lower Bound

Let B be any randomized hierarchical clustering algorithm. Let p be the prob-
ability that B outputs the optimal 6-clustering. Thus the maximum diameter
is 1 with probability p, and at least 2 with probability 1 − p. (See analysis for
the deterministic scenario). We compute the expected competitive ratio of B for
k = 4 and k = 6, and by definition, the expected competitive ratio of B over all
values of k is at least the maximum of these two values.

For k = 4 the competitive ratio is

E(B4(S))/OPT4(S) ≥ (4p + 2(1 − p))/2 = 1 + p .

where the first inequality follows from the fact that when B chooses the optimal
6-clustering, its 4-clustering will have a cluster of diameter ≥ 4.

For k = 6 the competitive ratio is

E(B6(S))/OPT6(S) ≥ (p + 2(1 − p))/1 = 2 − p .

The expected competitive ratio is max(1 + p, 2 − p) ≥ 1.5.

6 Proof of the Online Hierarchical Supplier Theorem

Our online algorithm for k-supplier will use the (online) tree-doubling algorithm
as a subroutine. Note that for the off-line hierarchical supplier problem we can

use either the tree-doubling or the farthest algorithm and achieve the same
performance guarantees described below. In fact, we conjecture that in the offline
case, a similar result may also be obtainable using methods from [3, 11].

6.1 The Algorithm

We denote a supplier as active if it is the closest supplier to one of the current
customers. Throughout the algorithm, we will maintain a hierarchical clustering
of the active suppliers by inserting them into the (deterministic or randomized)
tree-doubling algorithm tree T +.

When a new customer c arrives, we find the supplier s who is closest to c. If
s is not yet in T +, we mark s as an active supplier and add s to T + (using the
deterministic or randomized tree-doubling algorithm).

To obtain a hierarchical k-supplier solution, find the largest depth d in T +

which contains k′ ≤ k active suppliers s1, s2, . . . sk′ and output these suppliers.
For each customer c with closest supplier s0, assign c to si for i ∈ [1, k′], if s0 = si

or if s0 is in the subtree below si in depth d of T +.

6.2 The Deterministic Analysis

Suppose d is the largest depth containing at most k active suppliers. Let s (at
depth d) be the supplier that customer c was assigned to and s0 be the active
supplier that c is closest to. Then there is a s0-to-s path in T +. Let s0, s1, . . . sp

be the sequence of the suppliers on the s0-to-s path, where sp = s. By the
triangular inequality, the distance from c to s can be bounded as:

d(c, s) ≤ d(c, s0) +

p−1
∑

i=0

d(si, si+1) . (4)

Let ∆ be the maximum distance between any two suppliers. By the close-
parent property of the tree-doubling algorithm, the distance from si to si+1 for
i ∈ [0, p − 1] is at most ∆/2depth(si)−1. Since the depths of suppliers on the
s0-to-s path are strictly decreasing, and sp−1 is on level d + 1, we have that,

p−1
∑

i=0

d(si, si+1) ≤
∆

2depth(sp−1)−1
(1 + 1/2 + 1/4 + . . .) ≤ 2

∆

2d
. (5)

Now we derive two lower bounds for OPTk. First, since s0 is the closest
supplier to c, we have that OPTk ≥ d(c, s0). Next, since d is the largest depth
in T + with at most k active suppliers, depth d + 1 contains at least k + 1
active suppliers, s1, s2, . . . , sk+1. Using Lemma 4, we have OPTk ≥ δ/4 where
δ = min1≤i<j≤k+1 d(si, sj) . By the Far-Cousins property of T +, δ is at least
∆/2d+1. Applying these bounds we obtain

d(c, s) ≤ d(c, s0) +
2∆

2d
≤ OPTk + 4δ .

Lemma 4 below shows that δ ≤ 4OPTk. Thus the final result that d(c, s) ≤
17OPTk follows as a corollary to lemma 4.

Lemma 4. Let d be the largest depth in T + with at most k active suppliers and
let s1, s2, . . . , sk+1 be active suppliers at depth d+1. Let δ = min1≤i<j≤k+1 d(si, sj),
and OPTk be the maximum distance from a customer to a supplier in the optimal
k-supplier solution. Then δ ≤ 4OPTk.

Proof. Since suppliers s1, s2, . . . , sk+1 are active, each of them is the closest
supplier to some customer ci. The solution OPTk uses at most k suppliers, so
it will have to assign two of those customers, ci and cj , to the same supplier s∗.
Thus,

OPTk ≥ max(d(ci, s
∗), d(cj , s

∗)) ≥ (d(ci, s
∗) + d(cj , s

∗))/2 .

Applying the triangle inequality on d(si, sj) we have that:

d(si, sj) ≤ d(si, ci) + d(ci, s
∗) + d(s∗, cj) + d(cj , sj)

Using the fact that si is the closest supplier to ci and sj is closest for cj , we
obtain

δ ≤ d(si, sj) ≤ 2(d(ci, s
∗) + d(cj , s

∗)) ≤ 4OPTk .

⊓⊔

6.3 The Randomized Analysis

Equation 4 still holds. Instead of Equation 5 we now have:

p−1
∑

i=0

d(si, si+1) ≤
er∆

edepth(sp−1)−1
(1 + 1/e + 1/e2 + . . .) ≤

e

e − 1

er∆

ed
.

Now, by Property 3 the minimum distance δ between s1, . . . , sk+1 satisfies er∆/ed+1 <
δ ≤ er∆/ed. Write δ = eǫer∆/ed+1, where ǫ is distributed uniformly in [0, 1). In
expectation we have

E(er∆/ed+1) = δ

∫ 1

0

e−ǫdǫ = δ
e − 1

e
.

Lemma 4 still holds, so we finally get:

E(d(c, s)) ≤ d(c, s0)+
e

e − 1
E(

er∆

ed
) ≤ OPTk +

e

e − 1
eδ

e − 1

e
≤ (1+4e) OPTk .

7 Conclusions and open questions

Hierarchical clustering provides a useful way to view large amounts of data in
an organized manner and is popular among statisticians, biologists and social
scientists [10]. In this work we have studied this problem when the objective
is to minimize the maximum cluster diameter and showed that two previously
known algorithms, tree doubling [2] and farthest algorithm [4] produce essentially
the same output. Both algorithms also work for the closely related objective of
minimizing the maximum cluster radius, where the radius of a cluster is defined
as the maximum distance from a designated center point to other points in the
cluster. Our result that the farthest clustering is a refinement of the tree doubling
clustering extend to radius objective. We also showed that the analyses of both
algorithms are tight under the diameter objective. However the example we
used to show tightness does not extend to the radius objective and finding a
tight example for this remains an open question.

We exhibited new lower bounds for hierarchical clustering for the diameter
objective. Do similar lower bounds exist for the radius objective? The derivation
of our bounds assumed no computational restrictions on the algorithm, however
it might be possible to get stronger lower bounds by placing such restrictions.

References

1. P. Arabie, L. J. Hubert and G. De Soete, editors. Clustering and Classifica-
tion. World Scientific, River Edge, NJ, 1998.

2. M. Charikar, C. Chekuri, T. Feder and R. Motwani. Incremental clustering
and dynamic information retrieval. SIAM Journal on Computing, 33(6):1417–
1440, 2004.

3. Marek Chrobak, Claire Kenyon, John Noga and Neal E. Young. Online Me-
dians via Online Bribery. Lecture Notes in Computer Science 3887:311-322
(2006); Latin American Theoretical Informatics, 2006.

4. S. Dasgupta, P. Long. Performance guarantees for hierarchical clustering.
Journal of Computer and System Sciences, 70(4):555-569, 2005.

5. R. O. Duda, P. E. Hart, and D. G. Sork. Pattern Classification. Wiley and
Sons, 2001.

6. T. F. Gonzalez. Clustering to Minimize the Maximum Intercluster Distance.
In Proceedings of the 17th Annual ACM Symposium on the Theory of Com-
puting, 38:293-306, 1985.

7. D.S Hochbaum. Various Notions of Approximations: Good, Better, Best and
More. In D.S Hochbaum, editor, Approximation Algorithms for NP-Hard
Problems. PWS Publishing Company. 1996.

8. Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the
k-center problem. Mathematics of Operations Research, 10:180–184, 1985.

9. A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall,
Englewood Cliffs, NJ, 1988.

10. L. Kaufman and Peter J. Rousseeuw, Finding Groups in Data: An Introduc-
tion to Cluster Analysis, Wiley, NY, 1990.

11. Guolong Lin, Chandrashekhar Nagarajan, Rajmohan Rajamaran, and David
P. Williamson. A general approach for incremental approximation and hi-
erarchical clustering. In Proceedings of the seventeenth annual ACM-SIAM
Symposium on Discrete algorithm (SODA), pages 1147-1156, 2006.

12. NSF Workshop Report on Emerging Issues in Aerosol Particle Science
and Technology (NAST), UCLA, 2003, Chapter 1, Section 18, “Improved
and rapid data analysis tools (Chemical Characterization)”. Available at
http://www.nano.gov/html/res/NSFAerosolParteport.pdf.

