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The simple and multiple linear regression methods we studied in
Chapters 10 and 11 are used to model the relationship between a
quantitative response variable and one or more explanatory variables. A key
assumption for these models is that the deviations from the model fit are
normally distributed. In this chapter we describe similar methods that are
used when the response variable has only two possible values.

How does the concentration of an insecticide relate to whether or not
an insect is killed?

To what extent does gender predict whether or not a college student will
be a binge drinker?

Is high blood pressure associated with an increased risk of death from
cardiovascular disease?

Prelude

34



CHAPTER

35

15
Logistic Regression



odds

EXAMPLE 15.1

EXAMPLE 15.2

p P n bino-
mial setting new explana-
tory variable x p x

y y
p

p

p
p

p
p

p p

p

n n p
n ,

p .
,

p .

p . .

4

4 4

4

Our response variable has only two values: success or failure, live or die, ac-
ceptable or not. If we let the two values be 1 and 0, the mean is the proportion
of ones, (success). With independent observations, we have the

(page 376). What is here is that we have data on an
. We study how depends on . For example, suppose we are

studying whether a patient lives ( 1) or dies ( 0) after being admit-
ted to a hospital. Here, is the probability that a patient lives, and possible
explanatory variables include (a) whether the patient is in good condition
or in poor condition, (b) the type of medical problem that the patient has,
and (c) the age of the patient. Note that the explanatory variables can be ei-
ther categorical or quantitative. Logistic regression is a statistical method for
describing these kinds of relationships.

In Chapter 5 we studied binomial distributions and in Chapter 8 we learned
how to do statistical inference for the proportion of successes in the bino-
mial setting. We start with a brief review of some of these ideas that we will
need in this chapter.

Logistic regressions work with rather than proportions. The odds
ˆare simply the ratio of the proportions for the two possible outcomes. If is

ˆthe proportion for one outcome, then 1 is the proportion for the second
outcome.

ˆ
ODDS

ˆ1

ˆA similar formula for the population odds is obtained by substituting for
in this expression.

4

4 4

4

4 4

Binomial distributions and odds

1
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odds

2 2

Example 8.1 describes a survey of 17,096 students in U.S. four-year colleges. The re-
searchers were interested in estimating the proportion of students who are frequent
binge drinkers. A student who reports drinking five or more drinks in a row three or
more times in the past two weeks is called a frequent binge drinker. In the notation of
Chapter 5, is the proportion of frequent binge drinkers in the entire population of
college students in U.S. four-year colleges. The number of frequent binge drinkers in
an SRS of size has the binomial distribution with parameters and . The sample
size is 17 096 and the number of frequent binge drinkers in the sample is 3314.
The sample proportion is

3314
ˆ 0 1938

17 096

For the binge-drinking data the proportion of frequent binge drinkers in the
ˆsample is 0 1938, so the proportion of students who are not frequent binge

drinkers is

ˆ1 1 0 1938 0 8062

2

2
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When people speak about odds, they often round to integers or fractions.
Since 0.24 is approximately 1/4, we could say that the odds that a college stu-
dent is a frequent binge drinker are 1 to 4. In a similar way, we could describe
the odds that a college student is a frequent binge drinker as 4 to 1.

In Example 8.8 (page 603) we compared the proportions of frequent binge
drinkers among men and women college students using a confidence interval.
There we found that the proportion for men was 0.227 (22.7%) and that the
proportion for women was 0.170 (17.0%). The difference is 0.057 and the 95%
confidence interval is (0.045, 0.069). We can summarize this result by saying,
“The proportion of frequent binge drinkers is 5.7% higher among men than
among women.”

Another way to analyze these data is to use logistic regression. The ex-
planatory variable is gender, a categorical variable. To use this in a regression
(logistic or otherwise), we need to use a numeric code. The usual way to do
this is with an . For our problem we will use an indicator
of whether or not the student is a man:

1 if the student is a man
0 if the student is a woman

The response variable is the proportion of frequent binge drinkers. For
use in a logistic regression, we perform two transformations on this variable.
First, we convert to odds. For men,

ˆ
ODDS

ˆ1

0 227
1 0 227

0 294

Similarly, for women we have

ˆ
ODDS

ˆ1

0 170
1 0 170

0 205

In simple linear regression we modeled the mean of the response variable
as a linear function of the explanatory variable: . With logistic

4

4

4

The logistic regression model

0 1
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indicator variable

2

Therefore, the odds of a student being a frequent binge drinker are

ˆ
ODDS

ˆ1

0 1938
0 8062

0 24

5
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statistical model for logistic regression

EXAMPLE 15.3
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regression we are interested in modeling the mean of the response variable
in terms of an explanatory variable . We could try to relate and through
the equation . Unfortunately, this is not a good model. As long as

0, extreme values of will give values of that are inconsistent
with the fact that 0 1.

The logistic regression solution to this difficulty is to transform the odds
( (1 )) using the natural logarithm. We use the term for this
transformation. We model the log odds as a linear function of the explanatory
variable:

log
1

Figure 15.1 graphs the relationship between and for some different values
of and . For logistic regression we use logarithms. There are
tables of natural logarithms, and many calculators have a built-in function
for this transformation. As we did with linear regression, we use for the
response variable. So for men,

log(ODDS) log(0 294) 1 23

and for women,

log(ODDS) log(0 205) 1 59

In these expressions we use as the observed value of the response vari-
able, the log odds of being a frequent binge drinker. We are now ready to build
the logistic regression model.

The is

log
1

where the is a binomial proportion and is the explanatory variable. The
parameters of the logistic model are and .

Logistic regression with an indicator explanatory variable is a very special
case. It is important because many multiple logistic regression analyses focus
on one or more such variables as the primary explanatory variables of interest.
For now, we use this special case to understand a little more about the model.

4

4 4

4 4

men women

0 1

1 0 1

0 1

0 1

0 1

0 1
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For our binge-drinking example, there are 17 096 students in the sample. The
explanatory variable is gender, which we have coded using an indicator variable with
values 1 for men and 0 for women. The response variable is also an indica-
tor variable. Thus, the student is either a frequent binge drinker or the student is not
a frequent binge drinker. Think of the process of randomly selecting a student and
recording the values of and whether or not the student is a frequent binge drinker.
The model says that the probability ( ) that this student is a frequent binge drinker
depends upon the student’s gender ( 1 or 0). So there are two possible values
for , say and .

±
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# #
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The logistic regression model specifies the relationship between and .
Since there are only two values for , we write both equations. For men,

log
1

and for women

log
1

Note that there is a term in the equation for men because 1 but it is
missing in the equation for women because 0.

In general the calculations needed to find estimates and for the param-
eters and are complex and require the use of software. When the ex-
planatory variable has only two possible values, however, we can easily find
the estimates. This simple framework also provides a setting where we can
learn what the logistic regression parameters mean.

4 4

4 4

men

men

women

women

FIGURE 15.1

Fitting and interpreting the logistic regression model

0 1

men
0 1

men

women
0

women

1

0 1

0 1

Chapter 15: Logistic Regression

2
2

2
2

In the binge-drinking example, we found the log odds for men

ˆ
log 1 23

ˆ1

and for women

ˆ
log 1 59

ˆ1

1 2

1 2
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odds ratio

EXAMPLE 15.5
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The slope in this logistic regression model is the difference between the
log(ODDS) for men and the log(ODDS) for women. Most people are not com-
fortable thinking in the log(ODDS) scale, so interpretation of the results in
terms of the regression slope is difficult. Usually, we apply a transformation
to help us. With a little algebra, it can be shown that

ODDS
1 43

ODDS

The transformation undoes the logarithm and transforms the logistic
regression slope into an , in this case, the ratio of the odds that a
man is a frequent binge drinker to the odds that a woman is a frequent binge
drinker. In other words, we can multiply the odds for women by the odds ratio
to obtain the odds for men:

ODDS 1.43 ODDS

In this case, the odds for men are 1.43 times the odds for women.
Notice that we have chosen the coding for the indicator variable so that

the regression slope is positive. This will give an odds ratio that is greater than
1. Had we coded women as 1 and men as 0, the signs of the parameters would
be reversed, the fitted equation would be log(ODDS) 1 59 0 36 , and the
odds ratio would be 0 70. The odds for women are 70% of the odds
for men.

Logistic regression with an explanatory variable having two values is a
very important special case. Here is an example where the explanatory vari-
able is quantitative.

4 `
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The logistic regression model for men is

log
1

and for women, it is

log
1

To find the estimates of and , we match the male and female model equations
with the corresponding data equations. Thus, we see that the estimate of the intercept

is simply the log(ODDS) for the women:

1 59

and the slope is the difference between the log(ODDS) for the men and the log(ODDS)
for the women:

1 23 ( 1 59) 0 36

The fitted logistic regression model is

log(ODDS) 1 59 0 36

The CHEESE data set described in the Data Appendix includes a response variable
called “Taste” that is a measure of the quality of the cheese obtained from several
tasters. For this example, we will classify the cheese as acceptable (tasteok 1) if

1 2

1 2

2

3

2
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Statistical inference for logistic regression is very similar to statistical infer-
ence for simple linear regression. We calculate estimates of the model param-
eters and standard errors for these estimates. Confidence intervals are formed
in the usual way, but we use standard normal -values rather than critical val-
ues from the distributions. The ratio of the estimate to the standard error is
the basis for hypothesis tests. Often the test statistics are given as the squares
of these ratios, and in this case the -values are obtained from the chi-square
distributions with 1 degree of freedom.

A is

SE

The ratio of the odds for a value of the explanatory variable equal to 1
to the odds for a value of the explanatory variable equal to is the

A is obtained by trans-
forming the confidence interval for the slope:

( )

In these expressions is the value for the standard normal density curve
with area between and .

To test the hypothesis : 0, compute the

X
SE

In terms of a random variable X having approximately a distribution
with 1 degree of freedom, the -value for a test of against : 0
is ( X ).
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Taste 37 and unacceptable (tasteok 0) if Taste 37. This is our response vari-
able. The data set contains three explanatory variables: “Acetic,” “H2S,” and “Lactic.”
Let’s use Acetic as the explanatory variable. The model is

log
1

where is the probability that the cheese is acceptable and is the value of Acetic.
The model for estimated log odds fitted by software is

log(ODDS) 13 71 2 25

The odds ratio is 9 48. This means that if we increase the acetic acid content
by one unit, we increase the odds that the cheese will be acceptable by about 9.5

times.
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Parameter Standard Wald Pr > Odds
Variable DF Estimate Error Chi-Square Chi-Square Ratio

INTERCPT 1 -1.5869 0.0267 3520.4040 0.0001 .
X 1 0.3616 0.0388 86.6714 0.0001 1.436

Logistic regression output for the binge-drinking data, for
Example 15.6.

b b

EXAMPLE 15.6

EXAMPLE 15.7
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Macrosiphoniella sanborni

We have expressed the hypothesis-testing framework in terms of the slope
because this form closely resembles what we studied in simple linear re-

gression. In many applications, however, the results are expressed in terms
of the odds ratio. A slope of 0 is the same as an odds ratio of 1, so we often
express the null hypothesis of interest as “the odds ratio is 1.” This means
that the two odds are equal and the explanatory variable is not useful for
predicting the odds.

In applications such as these, it is standard to use 95% for the confidence
coefficient. With this convention, the confidence interval gives us the result of
testing the null hypothesis that the odds ratio is 1 for a significance level of
0.05. If the confidence interval does not include 1, we reject and conclude
that the odds for the two groups are different; if not, the data do not provide
enough evidence to distinguish the groups in this way.

The following example is typical of many applications of logistic regres-
sion. Here there is a designed experiment with five different values for the
explanatory variable.
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SE SE 0 2855 0 4376
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FIGURE 15.2
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Figure 15.2 gives the output from the SAS logistic procedure for the binge-drinking
example. The parameter estimates are given as 1 5869 and 0 3616, the
same as we calculated directly in Example 15.4, but with more significant digits. The
standard errors are 0.0267 and 0.0388. A 95% confidence interval for the slope is

SE 0 3616 (1 96)(0 0388)
0 3616 0 0760

We are 95% confident that the slope is between 0.2855 and 0.4376. The output pro-
vides the odds ratio 1.436 but does not give the confidence interval. This is easy to
compute from the interval for the slope:

( ) ( )
(1 33 1 55)

For this problem we would report, “College men are more likely to be frequent binge
drinkers than college women (odds ratio 1.44, 95% CI is 1.33 to 1.55).”

An experiment was designed to examine how well the insecticide rotenone kills
aphids that feed on the chrysanthemum plant called .
The explanatory variable is the log concentration (in milligrams per liter) of the
insecticide. At each concentration, approximately 50 insects were exposed. Each in-
sect was either killed or not killed. We summarize the data using the number killed.

b

b z b z . .

b
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Plot of log odds of percent killed versus log concentration for the
insecticide data, for Example 15.7.

Macrosiphoniella sanborni

P
P

One of the major themes of this text is that we should present the results
of a statistical analysis with a graph. For the insecticide example we have done
this with Figure 15.4 and the results appear to be convincing. But suppose that
rotenone has no ability to kill . What is the chance
that we would observe experimental results at least as convincing as what we
observed if this supposition were true? The answer is the -value for the test
of the null hypothesis that the logistic regression slope is zero. If this -value

FIGURE 15.3

Chapter 15: Logistic Regression

The response variable for logistic regression is the log odds of the proportion killed.
Here are the data:

Concentration (log)Number of insects Number killed

0.96 50 6
1.33 48 16
1.63 46 24
2.04 49 42
2.32 50 44

If we transform the response variable (by taking log odds) and use least-squares, we
get the fit illustrated in Figure 15.3. The logistic regression fit is given in Figure 15.4.
It is a transformed version of Figure 15.3 with the fit calculated using the logistic
model.
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Parameter Standard Wald Pr > Odds
Variable DF Estimate Error Chi-Square Chi-Square Ratio

INTERCPT 1 -4.8869 0.6429 57.7757 0.0001 .
LCONC 1 3.1035 0.3877 64.0744 0.0001 22.277

Plot of percent killed versus log concentration with the logistic fit
for the insecticide data, for Example 15.7.

Logistic regression output for the insecticide data, for Example
15.8.

EXAMPLE 15.8
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is not small, our graph may be misleading. Statistical inference provides what
we need.
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FIGURE 15.5

Chapter 15: Logistic Regression

2

2

,

b b

b

The output produced by the SAS logistic procedure for the analysis of the insecticide
data is given in Figure 15.5. The model is

log
1

where the values of the explanatory variable are 0 96 1 33 1 63 2 04 2 32. From
the output we see that the fitted model is

log(ODDS) 4 89 3 10

This is the fit that we plotted in Figure 15.4. The null hypothesis that 0 is
clearly rejected (X 64 07, 0 001). We calculate a 95% confidence interval for

1 2
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Parameter Standard Wald Pr > Odds
Variable DF Estimate Error Chi-Square Chi-Square Ratio

INTERCPT 1 -13.7052 5.9319 5.3380 0.0209 .
ACETIC 1 2.2490 1.0271 4.7947 0.0285 9.479

Logistic regression output for the cheese data with Acetic as the
explanatory variable, for Example 15.9.
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EXAMPLE 15.9
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In Example 15.5 we studied the problem of predicting whether or not the
taste of cheese was acceptable using Acetic as the explanatory variable. We
now revisit this example and show how statistical inference is an important
part of the conclusion.
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FIGURE 15.6
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using the estimate 3 1035 and its standard error SE 0 3877 given in the
output:

SE 3 1035 (1 96)(0 3877)

3 1035 0 7599

We are 95% confident that the true value of the slope is between 2.34 and 3.86.
The odds ratio is given on the output as 22.277. An increase of one unit in the

log concentration of insecticide ( ) is associated with a 22-fold increase in the odds
that an insect will be killed. The confidence interval for the odds is obtained from the
interval for the slope:

( ) ( )

(10 42 47 63)

Note again that the test of the null hypothesis that the slope is zero is the same as
the test of the null hypothesis that the odds are 1. If we were reporting the results in
terms of the odds, we could say, “The odds of killing an insect increase by a factor
of 22.3 for each unit increase in the log concentration of insecticide (X 64 07,

0 001; 95% CI is 10.4 to 47.6).”

The output for a logistic regression analysis using Acetic as the explanatory variable
is given in Figure 15.6. In Example 15.5 we gave the fitted model:

log(ODDS) 13 71 2 25

From the output we see that because 0 0285, we can reject the null hypothesis
that 0. The value of the test statistic is X 4 79 with 1 degree of freedom. We
use the estimate 2 2490 and its standard error SE 1 0271 to compute the
95% confidence interval for :

SE 2 2490 (1 96)(1 0271)

2 2490 2 0131

Our estimate of the slope is 2.25 and we are 95% confident that the true value is
between 0.24 and 4.26. For the odds ratio, the estimate on the output is 9.48. The
95% confidence interval is

( ) ( )

(1 27 70 96)
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Intercept
Intercept and

Criterion Only Covariates Chi-Square for Covariates
-2 LOG L 34.795 18.461 16.334 with 3 DF (p=0.0010)

Parameter Standard Wald Pr > Odds
Variable DF Estimate Error Chi-Square Chi-Square Ratio

INTERCPT 1 -14.2604 8.2869 2.9613 0.0853 .
ACETIC 1 0.5845 1.5442 0.1433 0.7051 1.794
H2S 1 0.6849 0.4040 2.8730 0.0901 1.983
LACTIC 1 3.4684 2.6497 1.7135 0.1905 32.086

Logistic regression output for the cheese data with Acetic, H2S,
and Lactic as the explanatory variables, for Example 15.10.

multiple logistic regres-
sion

EXAMPLE 15.10

b b b b

. . . .

H

We estimate that increasing the acetic acid content of the cheese by one
unit will increase the odds that the cheese will be acceptable by about 9 times.
The data, however, do not give us a very accurate estimate. The odds ratio
could be as small as a little more than 1 or as large as 71 with 95% con-
fidence. We have evidence to conclude that cheeses with higher concentra-
tions of acetic acid are more likely to be acceptable, but establishing the true
relationship accurately would require more data.

The cheese example that we just considered naturally leads us to the next
topic. The data set includes three variables: Acetic, H2S, and Lactic. We ex-
amined the model where Acetic was used to predict the odds that the cheese
was acceptable. Do the other explanatory variables contain additional infor-
mation that will give us a better prediction? We use

to answer this question. Generating the computer output is easy, just as it
was when we generalized simple linear regression with one explanatory vari-
able to multiple linear regression with more than one explanatory variable in
Chapter 11. The statistical concepts are similar although the computations
are more complex. Here is the example.

4 ` ` `

4 ` ` `

4 4 4

0 1 2 3

0 1 2 3

FIGURE 15.7

Multiple logistic regression
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multiple logistic
regression

2

b b b

As in Example 15.8, we predict the odds that the cheese is acceptable. The explana-
tory variables are Acetic, H2S, and Lactic. Figure 15.7 gives the output. The fitted
model is

log(ODDS) Acetic H2S Lactic

14 26 0 58Acetic 0 68H2S 3 47Lactic

When analyzing data using multiple regression, we first examine the hypothesis that
all of the regression coefficients for the explanatory variables are zero. We do the
same for logistic regression. The hypothesis

: 0

46



b b

odds

logistic regression model

parameters

odds ratio

level confidence interval for the intercept

level confidence interval for the slope

level confidence interval for the odds ratio

. . .

C

C

C

p p p

p
x

p

i , , , n
p

B , p x

e

b z

b z

e

e , e

z
C z z

p p

. P H

P
H H H

4 `

4

Our initial multiple logistic regression analysis told us that the explana-
tory variables contain information that is useful for predicting whether or not
the cheese is acceptable. Because the explanatory variables are correlated,
however, we cannot clearly distinguish which variables or combinations of
variables are important. Further analysis of these data using subsets of the
three explanatory variables is needed to clarify the situation. We leave this
work for the exercises.

ˆ ˆ ˆIf is the sample proportion, then the are (1 ), the ratio of the
proportion of times the event happens to the proportion of times the event
does not happen.

The relates the log of the odds to the explanatory
variable:

log
1

where the response variables for 1 2 are independent binomial ran-
dom variables with parameters 1 and ; that is, they are independent with
distributions (1 ). The explanatory variable is .

The of the logistic model are and .

The is , where is the slope in the logistic regression model.

A is

SE

A is

SE

A is obtained by trans-
forming the confidence interval for the slope:

( )

In these expressions is the value for the standard normal density curve with
area between and .
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is tested by a chi-square statistic with 3 degrees of freedom. This is given in the
output on the line for the criterion “ 2 LOG L” under the heading “Chi-Square for
Covariates.” The statistic is X 16 33 and the -value is 0.001. We reject and
conclude that one or more of the explanatory variables can be used to predict the
odds that the cheese is acceptable. We now examine the coefficients for each variable
and the tests that each of these is 0. The -values are 0.71, 0.09, and 0.19. None of
the null hypotheses, : 0, : 0, and : 0, can be rejected.
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multiple logistic regression
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(a)

(b)

(c)

15.2

(a)

(b)
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4

To test the hypothesis : 0, compute the

SE

In terms of a random variable X having a distribution with 1 degree of
freedom, the -value for a test of against : 0 is ( X ). This
is the same as testing the null hypothesis that the odds ratio is 1.

In the response variable has two possible values,
as in logistic regression, but there can be several explanatory variables.

There is much evidence that high blood pressure is associated with
increased risk of death from cardiovascular disease. A major study of this
association examined 3338 men with high blood pressure and 2676 men
with low blood pressure. During the period of the study, 21 men in the
low-blood-pressure and 55 in the high-blood-pressure group died from
cardiovascular disease.

Find the proportion of men who died from cardiovascular disease in
the high-blood-pressure group. Then calculate the odds.

Do the same for the low-blood-pressure group.

Now calculate the odds ratio with the odds for the high-blood-pressure
group in the numerator. Describe the result in words.

To what extent do syntax textbooks, which analyze the structure of
sentences, illustrate gender bias? A study of this question sampled sentences
from ten texts. One part of the study examined the use of the words “girl,”
“boy,” “man,” and “woman.” We will call the first two words juvenile and
the last two adult. Here are data from one of the texts. (From Monica
Macaulay and Colleen Brice, “Don’t touch my projectile: gender bias
and stereotyping in syntactic examples,” , 73, no. 4 (1997),
pp. 798–825.)

Gender (juvenile)

Female 60 48
Male 132 52

Find the proportion of the female references that are juvenile. Then
transform this proportion to odds.

Do the same for the male references.

What is the odds ratio for comparing the female references to the male
references? (Put the female odds in the numerator.)
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15.3

(a)

(b)

(c)

15.4

(a)

(b)
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Refer to the study of cardiovascular disease and blood pressure in
Exercise 15.1. Computer output for a logistic regression analysis of
these data gives the estimated slope 0 7505 with standard error
SE 0 2578.

Give a 95% confidence interval for the slope.

Calculate the X statistic for testing the null hypothesis that the slope is
zero and use Table F to find an approximate -value.

Write a short summary of the results and conclusions.

The data from the study of gender bias in syntax textbooks given in
Exercise 15.2 are analyzed using logistic regression. The estimated slope
is 1 8171 and its standard error is SE 0 3686.

Give a 95% confidence interval for the slope.

Calculate the X statistic for testing the null hypothesis that the slope is
zero and use Table F to find an approximate -value.

Write a short summary of the results and conclusions.

The results describing the relationship between blood pressure and
cardiovascular disease are given in terms of the change in log odds in
Exercise 15.3.

Transform the slope to the odds and the 95% confidence interval for the
slope to a 95% confidence interval for the odds.

Write a conclusion using the odds to describe the results.

The gender bias in syntax textbooks is described in the log odds scale in
Exercise 15.4.

Transform the slope to the odds and the 95% confidence interval for the
slope to a 95% confidence interval for the odds.

Write a conclusion using the odds to describe the results.

To be competitive in global markets, many U.S. corporations are
undertaking major reorganizations. Often these involve “downsizing” or
a “reduction in force” (RIF), where substantial numbers of employees
are terminated. Federal and various state laws require that employees
be treated equally regardless of their age. In particular, employees over
the age of 40 years are in a “protected” class, and many allegations of
discrimination focus on comparing employees over 40 with their younger
coworkers. Here are the data for a recent RIF:

Over 40

Terminated No Yes

Yes 7 41
No 504 765
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(a)

(b)

(c)

(d)

15.8

15.9

15.10

15.11

b .
.

Accident Analysis and
Prevention

n X

The following four exercises use the CSDATA data set described in the Data
Appendix. We examine models for relating success as measured by the GPA
to several explanatory variables. In Chapter 11 we used multiple regression
methods for our analysis. Here, we define an indicator variable, say HIGPA, to
be 1 if the GPA is 3.0 or better and 0 otherwise.

4

4

Write the logistic regression model for this problem using the log odds
of a RIF as the response variable and an indicator for over and under
40 years of age as the explanatory variable.

Explain the assumptions concerning binomial distributions in terms
of the variables in this exercise. To what extent do you think that these
assumptions are reasonable?

Software gives the estimated slope 1 3504 and its standard error
SE 0 4130. Transform the results to the odds scale. Summarize the
results and write a short conclusion.

If additional explanatory variables were available, for example, a
performance evaluation, how would you use this information to study
the RIF?

A study of alcohol use and deaths due to bicycle accidents collected data
on a large number of fatal accidents. For each of these, the individual
who died was classified according to whether or not there was a positive
test for alcohol and by gender. Here are the data. (From Guohua Li and
Susan P. Baker, “Alcohol in fatally injured bicyclists,”

, 26 (1994), pp. 543–548.)

Gender (tested positive)

Female 191 27
Male 1520 515

Use logistic regression to study the question of whether or not gender is
related to alcohol use in people who are fatally injured in bicycle accidents.

In Examples 15.5 and 15.9, we analyzed data from the CHEESE data set
described in the Data Appendix. In those examples, we used Acetic as the
explanatory variable. Run the same analysis using H2S as the explanatory
variable.

Refer to the previous exercise. Run the same analysis using Lactic as the
explanatory variable.

For the cheese data analyzed in Examples 15.5, 15.9, and 15.10 and in
the two exercises above, there are three explanatory variables. There are
three different logistic regressions that include two explanatory variables.
Run these. Summarize the results of these analyses, the ones using each
explanatory variable alone, and all three explanatory variables together.
What do you conclude?
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15.12

(a)

(b)

(c)

15.13

(a)

(b)

(c)

15.14

(a)

(b)

(c)

15.15

(a)

(b)

(c)

15.16

H

H

the reversal of the direction of a comparison or an association when data from
several groups are combined to form a single group.

4 4 4

4 4

Use a logistic regression to predict HIGPA using the three high school grade
summaries as explanatory variables.

Summarize the results of the hypothesis test that the coefficients for all
three explanatory variables are zero.

Give the coefficient for high school math grades with a 95% confidence
interval. Do the same for the two other predictors in this model.

Summarize your conclusions based on parts (a) and (b).

Use a logistic regression to predict HIGPA using the two SAT scores as
explanatory variables.

Summarize the results of the hypothesis test that the coefficients for
both explanatory variables are zero.

Give the coefficient for SAT math with a 95% confidence interval. Do
the same for the SAT verbal score.

Summarize your conclusions based on parts (a) and (b).

Run a logistic regression to predict HIGPA using the three high school
grade summaries and the two SAT scores as explanatory variables. We
want to produce an analysis that is similar to that done for the case study
in Chapter 11.

Test the null hypothesis that the coefficients of the three high school
grade summaries are zero; that is, test : 0.

Test the null hypothesis that the coefficients of the two SAT scores are
zero; that is, test : 0.

What do you conclude from the tests in (a) and (b)?

In this exercise we investigate the effect of gender on the odds of getting a
high GPA.

Use gender to predict HIGPA using a logistic regression. Summarize
the results.

Perform a logistic regression using gender and the two SAT scores to
predict HIGPA. Summarize the results.

Compare the results of parts (a) and (b) with respect to how gender
relates to HIGPA. Summarize your conclusions.

In Example 2.32 (page 189) we studied an example of Simpson’s paradox,

The data concerned two
hospitals, A and B, and whether or not patients undergoing surgery died or
survived. Here are the data for all patients:

Hospital A Hospital B

Died 63 16
Survived 2037 784

Total 2100 800

0 HSM HSS HSE

0 SATM SATV

Chapter 15 Exercises

b b b

b b

51



(a)

(b)

(c)

An Introduction to
Categorical Data Analysis,

Applied Logistic Regression,

Probit Analysis,

And here are the more detailed data where the patients are categorized as
being in good condition or poor condition:

Good condition Poor condition

Hospital A Hospital B Hospital A Hospital B

Died 6 8 Died 57 8
Survived 594 592 Survived 1443 192

Total 600 600 Total 1500 200

Use a logistic regression to model the odds of death with hospital as the
explanatory variable. Summarize the results of your analysis and give
a 95% confidence interval for the odds ratio of Hospital A relative to
Hospital B.

Rerun your analysis in (a) using hospital and the condition of the
patient as explanatory variables. Summarize the results of your analysis
and give a 95% confidence interval for the odds ratio of Hospital A
relative to Hospital B.

Explain Simpson’s paradox in terms of your results in parts (a) and (b).

1.

2.

NOTES

Chapter 15: Logistic Regression

Logistic regression models for the general case where there are more than two
possible values for the response variable have been developed. These are
considerably more complicated and are beyond the scope of our present study. For
more information on logistic regression, see A. Agresti,

Wiley, New York, 1996; and D. W. Hosmer and
S. Lemeshow, Wiley, New York, 1989.

This example is taken from a classic text written by a contemporary of R. A. Fisher,
the person who developed many of the fundamental ideas of statistical inference
that we use today. The reference is D. J. Finney, Cambridge
University Press, Cambridge, 1947. Although not included in our analysis, it is
important to note that the experiment included a control group that received no
insecticide. No aphids died in this group. We have chosen to call the response
“dead.” In Finney’s text, the category is described as “apparently dead, moribund,
or so badly affected as to be unable to walk more than a few steps.” This is an early
example of the need to make careful judgments when defining variables to be used
in a statistical analysis. An insect that is “unable to walk more than a few steps” is
unlikely to eat very much of a chrysanthemum plant!
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