
 

Oracle® SQL Developer
Supplementary Information for MySQL Migrations  

Release 2.1 

E15225-01

December 2009

This document contains information for migrating from 
MySQL to Oracle. It supplements the information about 
migration in Oracle SQL Developer User's Guide.



Oracle SQL Developer Supplementary Information for MySQL Migrations, Release 2.1

E15225-01

Copyright © 1998, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Chuck Murray

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on 
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data 
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" 
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As 
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and 
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of 
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software 
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not 
developed or intended for use in any inherently dangerous applications, including applications which may 
create a risk of personal injury. If you use this software in dangerous applications, then you shall be 
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use 
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of 
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks 
of their respective owners.

This software and documentation may provide access to or information on content, products, and services 
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all 
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and 
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of 
third-party content, products, or services.



iii

Contents

Preface .................................................................................................................................................................    v

Audience.......................................................................................................................................................     v
Documentation Accessibility .....................................................................................................................     v
Related Documents .....................................................................................................................................    vi
Conventions .................................................................................................................................................    vi
Third-Party License Information...............................................................................................................    vi

1  Introduction

2  Oracle and MySQL Compared

Database Security .....................................................................................................................................   2-1
Database Authentication...................................................................................................................   2-1
Privileges .............................................................................................................................................   2-1

Schema Migration ....................................................................................................................................   2-2
Schema Object Similarities................................................................................................................   2-2
Schema Object Names .......................................................................................................................   2-3
Table Design Considerations............................................................................................................   2-4

Character Data Types .................................................................................................................   2-4
Column Default Value ...............................................................................................................   2-5

Migrating Multiple Databases..........................................................................................................   2-5
Schema Migration Considerations for MySQL..............................................................................   2-5

Databases......................................................................................................................................   2-5
Mapping MySQL Global and Database-Level Privileges to Oracle System Privileges....   2-5
Temporary Tables .......................................................................................................................   2-6
Owner of Schema Objects ..........................................................................................................   2-6

Data Types .................................................................................................................................................   2-7
Supported Oracle Data Types ..........................................................................................................   2-7
Default Data Type Mappings ...........................................................................................................   2-8
Comparing Data Types .....................................................................................................................   2-9

Numeric Types ............................................................................................................................   2-9
Date and Time Types...............................................................................................................    2-10
String Types ..............................................................................................................................    2-10

Data Storage Concepts..........................................................................................................................    2-11



iv

3  Triggers and Stored Procedures

Triggers .......................................................................................................................................................   3-1
Stored Procedures.....................................................................................................................................   3-2

Individual SQL Statements...............................................................................................................   3-2
REPLACE Statement ..................................................................................................................   3-2
DO Statement...............................................................................................................................   3-2
Compound DECLARE Statement ............................................................................................   3-3
Compound SET Statement ........................................................................................................   3-3

Variables in Stored Procedures ........................................................................................................   3-4
Error Handling in Stored Procedures .............................................................................................   3-7

4  Troubleshooting

Defining the User Account .....................................................................................................................   4-1
Dumping MySQL Data ...........................................................................................................................   4-1
Optimizing Command Line Options ...................................................................................................   4-2

Index



v

Preface

Oracle SQL Developer Supplementary Information for MySQL Migrations describes several 
differences between MySQL and Oracle. It also outlines how those differences are 
dealt with by SQL Developer during the migration process.

Audience
This guide is intended for anyone who is involved in converting a MySQL database to 
Oracle using SQL Developer.

You should be familiar with relational database concepts and with the operating 
system environments under which you are running Oracle and MySQL.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation 
accessible to all users, including users that are disabled. To that end, our 
documentation includes features that make information available to users of assistive 
technology. This documentation is available in HTML format, and contains markup to 
facilitate access by the disabled community. Accessibility standards will continue to 
evolve over time, and Oracle is actively engaged with other market-leading 
technology vendors to address technical obstacles so that our documentation can be 
accessible to all of our customers. For more information, visit the Oracle Accessibility 
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The 
conventions for writing code require that closing braces should appear on an 
otherwise empty line; however, some screen readers may not always read a line of text 
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or 
organizations that Oracle does not own or control. Oracle neither evaluates nor makes 
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call 
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle 
technical issues and provide customer support according to the Oracle service request 
process. Information about TRS is available at 



vi

http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone 
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
For information about using Oracle SQL Developer, see Oracle SQL Developer User's 
Guide and the SQL Developer online help.

For information about installing Oracle SQL Developer, see Oracle SQL Developer 
Installation Guide.

Oracle error message documentation is only available in HTML. If you only have 
access to the Oracle Documentation CD, you can browse the error messages by range. 
Once you find the specific range, use your browser's "find in page" feature to locate the 
specific message. When connected to the Internet, you can search for a specific error 
message using the error message search feature of the Oracle online documentation.

To download free release notes, installation documentation, white papers, or other 
collateral, go to the Oracle Technology Network (OTN). You must register online 
before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership

If you already have a user name and password for OTN, then you can go directly to 
the documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation

Conventions
The following text conventions are used in this document:

Third-Party License Information
Oracle SQL Developer contains third-party code. Oracle is required to provide the 
following notices. Note, however, that the Oracle program license that accompanied 
this product determines your right to use the Oracle program, including the 
third-party software, and the terms contained in the following notices do not change 
those rights.

Apache Regular Expression Package 2.0
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this 
file except in compliance with the License. You may obtain a copy of the License at: 
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under 
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR 

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.



vii

CONDITIONS OF ANY KIND, either express or implied. See the License for the 
specific language governing permissions and limitations under the License.

Antlr v 2.7.3
http://www.antlr.org/rights.html

OracleAS TopLink uses Antlr for EJB QL parsing. Antlr (ANother Tool for Language 
Recognition), is a language tool that provides a framework for constructing 
recognizers, compilers, and translators from grammatical descriptions containing C++ 
or Java actions. The ANTLR parser and translator generator is fully in the public 
domain.

JGoodies Looks and Forms
Copyright © 2003 JGoodies Karsten Lentzsch. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are 
permitted provided that the following conditions are met:

■ Redistributions of source code must retain the above copyright notice, this list of 
conditions and the following disclaimer.

■ Redistributions in binary form must reproduce the above copyright notice, this list 
of conditions and the following disclaimer in the documentation and/or other 
materials provided with the distribution.

■ Neither the name of JGoodies Karsten Lentzsch nor the names of its contributors 
may be used to endorse or promote products derived from this software without 
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGE.



viii



1

Introduction 1-1

1 Introduction

This document provides supplementary reference information for migrating MySQL 
databases to Oracle using the Oracle SQL Developer tool. It includes information to 
help you plan for the migration and to solve any problems that might occur during or 
after the migration.

You should already know how to use the SQL Developer tool, including its migration 
capabilities. SQL Developer is described in Oracle SQL Developer User's Guide and in 
the online help.

The following supplementary reference information is available:

■ Chapter 2, "Oracle and MySQL Compared"

■ Chapter 3, "Triggers and Stored Procedures"

■ Chapter 4, "Troubleshooting"



1-2 Oracle SQL Developer Supplementary Information for MySQL Migrations



2

Oracle and MySQL Compared 2-1

2 Oracle and MySQL Compared

This chapter compares the MySQL database and the Oracle database. It includes the 
following sections:

■ Database Security

■ Schema Migration

■ Data Types

■ Data Storage Concepts

2.1 Database Security
This section includes information about security issues with MySQL databases and 
Oracle databases.

As with Oracle, MySQL users are maintained by the database. MySQL uses a set of 
grant tables to keep track of users and the privileges that they can have. MySQL uses 
these grant tables when performing authentication, authorization and access control 
for users.

2.1.1 Database Authentication
Unlike Oracle (when set up to use database authentication) and most other databases 
that use only the user name and password to authenticate a user, MySQL uses an 
additional location parameter when authenticating a user. This location 
parameter is usually the host name, IP address, or a wildcard (“%”). With this 
additional parameter, MySQL may further restrict a user access to the database to a 
particular host or hosts in a domain. Moreover, this also allows a different password 
and set of privileges to be enforced for a user depending on the host from which the 
connection is made. Thus, user scott, who logs on from abc.com may or may not the 
same as user scott who logs on from xyz.com.

2.1.2 Privileges
The MySQL privilege system is a hierarchical system that works through inheritance. 
Privileges granted at a higher level are implicitly passed down to all lower levels and 
may be overridden by the same privileges set at lower levels. MySQL allows privileges 
to be granted at five different levels, in descending order of the scope of the privileges: 

■ Global

■ Per-host basis

■ Database-level



Schema Migration

2-2 Oracle SQL Developer Supplementary Information for MySQL Migrations

■ Table-specific

■ Column-specific (single column in a single table

Each level has a corresponding grant table in the database. When performing a 
privilege check, MySQL checks each of the tables in descending order of the scope of 
the privileges, and the privileges granted at a lower level take precedence over the 
same privileges granted at a higher level.

The privileges supported by MySQL are grouped into two types: administrative 
privileges and per-object privileges. The administrative privileges are global privileges 
that have server-wide effects and are concerned with the functioning of MySQL. These 
administrative privileges include the FILE, PROCESS, REPLICATION, SHUTDOWN 
and SUPER privilege. The per-object privileges affect database objects such tables, 
columns, indexes, and stored procedures, and can be granted with a different scope. 
These per-object privileges are named after the SQL queries that trigger their checks.

Unlike in Oracle, there is no concept of role in MySQL. Thus, in order to grant a group 
of users the same set of privileges, the privileges have to be granted to each user 
separately. Alternately, though less satisfactory for auditing, users performing tasks as 
a role may all share a single user account that is designated for the "role" and with the 
required privileges granted.

2.2 Schema Migration
The schema contains the definitions of the tables, views, indexes, users, constraints, 
stored procedures, triggers, and other database-specific objects. Most relational 
databases work with similar objects.

This section contains the following:

■ Schema Object Similarities

■ Schema Object Names

■ Table Design Considerations

■ Migrating Multiple Databases

■ Schema Migration Considerations for MySQL

2.2.1 Schema Object Similarities
There are many similarities between schema objects in Oracle and MySQL. However, 
some schema objects differ between these databases. For more information about 
schema objects, see Oracle SQL Reference.

Table 2–1 shows the differences between Oracle and MySQL.

Table 2–1 Schema Objects in Oracle and MySQL

Oracle MySQL

AFTER trigger trigger

BEFORE trigger trigger

Check constraint Check constraint

Column default Column default

Database Database

Foreign key Foreign key



Schema Migration

Oracle and MySQL Compared 2-3

2.2.2 Schema Object Names
Oracle is case insensitive to object names, and Oracle schema object names are stored 
as uppercase.

As in Oracle, column, index, stored procedure, and trigger names as well as column 
aliases in MySQL are case insensitive on all platforms. However, the case sensitivity of 
database and tables names for MySQL differs from Oracle. In MySQL, databases 
correspond to directories within the data directory, and tables correspond to one or 
more files within the database directory. As such, the case sensitivity of the database 
and table names is determined by the case sensitivity of the underlying operating 
systems. This means that database and table names are not case-sensitive in Windows 
and are case-sensitive in most varieties of Unix. However, MySQL allows users to 
determine how the database and table names are stored on disk and in their use in 
MySQL through the lower_case_table_names system variable. Table aliases are 
case-sensitive in releases before MySQL 4.1.1.

Both Oracle and MySQL let you use reserved words as object names by representing 
the name with a quoted identifier. However, MySQL allows some reserved words 
such as DATE and TIMESTAMP to be used as unquoted identifier for object names, 
although this is not allowed in Oracle. SQL Developer appends an underscore (_) to 
the name of a MySQL object that is an Oracle reserved word.

MySQL and Oracle have some minor differences in their definition of an identifier. In 
MySQL, an unquoted identifier may begin with a digit, and double quotation marks 
are allowed in a quoted identifier; however, neither of these is allowed in an Oracle 
identifier. In MySQL, the quote character is the backtick (`). If the SQL mode ANSI_
QUOTES is set, double quotes can also be used to quote the identifiers. In Oracle, 
identifiers are quoted using double quotation marks.

Index Index

Package N/A

PL/SQL function Routine

PL/SQL procedure Routine

Primary key Primary key

Role N/A

Schema Schema

Sequence AUTO_INCREMENT for a column

Snapshot N/A

Synonym N/A

Table Table

Tablespace N/A

Temporary table Temporary table

Trigger for each row Trigger for each row

Unique key Unique key

User User

View View

Table 2–1 (Cont.) Schema Objects in Oracle and MySQL

Oracle MySQL



Schema Migration

2-4 Oracle SQL Developer Supplementary Information for MySQL Migrations

You should choose a schema object name that is unique by case and by at least one 
other characteristic, and ensure that the object name is not a reserved word from either 
database.

2.2.3 Table Design Considerations
This section discusses table design issues that you need to consider when converting 
MySQL databases to Oracle. This section includes the following: 

■ Character Data Types

■ Column Default Value

2.2.3.1 Character Data Types
MySQL and Oracle have some differences in the character types that they support and 
in the way they store and retrieve the character type values.

MySQL supports the CHAR and VARCHAR type for character type with a length that 
is less than 65,535 bytes. The CHAR type can have a maximum length of 255 bytes, 
and as of MySQL 3.23 it may also be declared with a length of 0 byte. Before MySQL 
5.0.3, the length specification for the VARCHAR type is the same as the CHAR type. 
From MySQL 5.0.3 on, the maximum length for the VARCHAR type is 65,535 bytes. 
Oracle supports four character types: CHAR, NCHAR, NVARCHAR2 and 
VARCHAR2. The minimum length that can be declared for all Oracle character types 
is 1 byte. The maximum size allowed for CHAR and NCHAR is 2,000 bytes, and for 
NVARCHAR2 and VARCHAR2 it is 4,000 bytes.

MySQL CHAR values are right-padded with spaces to the specified length when they 
are stored, and trailing spaces are removed when the values are retrieved. On the 
other hand, VARCHAR values are stored using as many characters as are given, but 
before MySQL 5.0.3 trailing spaces are removed when the values are stored and 
retrieved. Oracle blank-pads the value for its CHAR and NCHAR type to the column 
length if the value is shorter than the column length, and trailing spaces are not 
removed on retrieval. For NVARCHAR2 and VARVHAR2 data type columns, Oracle 
stores and retrieves the value exactly as is given, including trailing spaces.

If a value is assigned to a character type column that exceeds its specified length, 
MySQL truncates the value and does not generate an error unless the STRICT SQL 
mode is set. Oracle generates an error if the value assigned to a character type column 
exceeds its specified length.

In MySQL, every character type (CHAR, VARCHAR, and TEXT) column has a column 
character set and collation. If the character set or collation is not explicitly defined in 
the column definition, the table character set or collation is implied if specified; 
otherwise, the database character or collation is chosen. In Oracle, the character set for 
CHAR and VARCHAR2 types is defined by the database character set, and for the 
character set for NCHAR and NVARCHAR types is defined the national character set.

When declaring a CHAR or VARCHAR type in MySQL, the default length semantics 
is characters instead of bytes for MySQL 4.1 and later. In Oracle, the default length 
semantics is bytes for CHAR and VARCHAR2 types and characters for NCHAR and 
NVARCHAR2 types.

SQL Developer will map MySQL CHAR and VARCHAR types to Oracle CHAR and 
VARCHAR2 types, respectively. SQL Developer will determine the maximum number 
of bytes for the Oracle CHAR and VARCHAR2 data type columns from the number of 
bytes required to hold the maximum length specified for the corresponding MySQL 
CHAR and VARCHAR data type columns. If the MySQL VARCHAR2 column is such 



Schema Migration

Oracle and MySQL Compared 2-5

that the data exceeds 4000 bytes, convert the column to an Oracle CLOB data type 
column.

2.2.3.2 Column Default Value
MySQL differs from Oracle in the way it handles default value for a column that does 
not allow NULL value.

In MySQL, for a column that does not allow NULL value and for which no data is 
provided for the column when data is inserted into the table, MySQL determines a 
default value for the column. This default value is the implicit default value for the 
column data type. However, if the strict mode is enabled, MySQL generates errors, 
and for transactional tables it rolls back the insert statement.

In Oracle, when data is inserted into a table, data must be provided for all columns 
that do not allow NULL value. Oracle does not generate a default value for columns 
that have the NOT NULL constraint.

2.2.4 Migrating Multiple Databases
SQL Developer supports the migration of multiple MySQL databases if they are on the 
same MySQL database server.

2.2.5 Schema Migration Considerations for MySQL
Schema migration considerations for MySQL apply in the following areas:

■ Databases

■ Mapping MySQL Global and Database-Level Privileges to Oracle System 
Privileges

■ Temporary Tables

■ Owner of Schema Objects

2.2.5.1 Databases
When migrating MySQL databases to Oracle, SQL Developer maps each MySQL 
database to a tablespace in Oracle. Database objects, such as tables, indexes and views 
are stored in the respective tablespaces and are referenced from the Oracle schema for 
the user that owns them. 

2.2.5.2 Mapping MySQL Global and Database-Level Privileges to Oracle System 
Privileges
SQL Developer does not process all the administrative privileges on MySQL, except 
the SUPER privilege. Table 2–2 shows the mappings for MySQL per-object privileges 
granted at the different levels as well as the SUPER privilege granted at the global 
level.

Table 2–2 MySQL Privileges and Oracle System Privileges

Level Privilege System Privilege(s) on Oracle

Global ALTER ALTER ANY TABLE, ALTER ANY SEQUENCE, 
ALTER ANY CUSTER, COMMENT ANY TABLE

Global ALTER ROUTINE ALTER ANY PROCEDURE, DROP ANY PROCEDURE



Schema Migration

2-6 Oracle SQL Developer Supplementary Information for MySQL Migrations

2.2.5.3 Temporary Tables
SQL Developer does not support the migration of temporary tables.

In MySQL, temporary tables are database objects that are visible only to the current 
user session and are automatically dropped when the user session ends.

The definition of temporary tables in Oracle differs slightly from MySQL, in that the 
temporary tables, once created, exist until they are explicitly dropped and they are 
visible to all sessions with appropriate privileges. However, the data in the temporary 
tables is visible only to the user session that inserts the data into the table, and the data 
may persist for the duration of a transaction or a user session.

2.2.5.4 Owner of Schema Objects
SQL Developer creates an Oracle schema for the MySQL root user that owns, for all 
databases to be migrated, all database objects except stored procedures. For stored 
procedures, the MySQL users that created them remain the owner. SQL Developer 
creates an Oracle schema for each MySQL user that is migrated.

Global CREATE CREATE ANY TABLE, CREATE ANY SEQUENCE, 
CREATE ANY CLUSTER, CREATE DATABASE LINK, 
COMMENT ANY TABLE

Global CREATE ROUTINE CREATE ANY PROCEDURE

Global CREATE USER CREATE USER, GRANT ANY PRIVILEGE

Global CREATE VIEW CREATE ANY VIEW

Global DELETE ALTER ANY TABLE, DROP USER, DELETE ANY 
TABLE

Global DROP DROP ANY TABLE, DROP ANY SEQUENCE, DROP 
ANY CLUSTER, DROP ANY VIEW

Global EXECUTE EXECUTE ANY PROCEDURE

Global INDEX CREATE ANY INDEX, ALTER ANY INDEX, DROP 
ANY INDEX

Global INSERT INSERT ANY TABLE

Global LOCK TABLES LOCK ANY TABLE

Global SELECT SELECT ANY TABLE

Global SUPER CREATE ANY TRIGGER, DROP ANY TRIGGER

Global UPDATE UPDATE ANY TABLE

Global USAGE CREATE SESSION, ALTER SESSION, UNLIMITED 
TABLESPACE

Database CREATE CREATE CLUSTER, CREATE DATABASE LINK, 
CREATE SEQUENCE, CREATE TABLE

Database CREATE ROUTINE CREATE PROCEDURE

Database CREATE VIEW CREATE VIEW

Table CREATE CREATE TABLE

Table CREATE VIEW CREATE VIEW

Table 2–2 (Cont.) MySQL Privileges and Oracle System Privileges

Level Privilege System Privilege(s) on Oracle



Data Types

Oracle and MySQL Compared 2-7

2.3 Data Types
This section describes the data types used within Oracle. It shows the MySQL data 
types and the Oracle equivalent. It includes information about the following: 

■ Supported Oracle Data Types

■ Default Data Type Mappings

■ Comparing Data Types

2.3.1 Supported Oracle Data Types
Table 2–3 describes the Oracle data types supported by Oracle SQL Developer.

Table 2–3 Supported Oracle Data Types

Data Type Description

BLOB A binary large object. Maximum size is 4 gigabytes.

CHAR (SIZE) Fixed-length character data of length size bytes. Maximum size is 
2000 bytes. Default and minimum size is 1 byte.

CLOB A character large object containing single-byte characters. Both 
fixed-width and variable-width character sets are supported, both 
using the CHAR database character set. Maximum size is 4 
gigabytes.

DATE The DATE data type stores date and time information. Although 
date and time information can be represented in both CHAR and 
NUMBER data types, the DATE data type has special associated 
properties. For each DATE value, Oracle stores the following 
information: century, year, month, day, hour, minute, and second.

FLOAT Specifies a floating-point number with decimal precision 38, or 
binary precision 126. 

LONG (SIZE) Character data of variable length up to 2 gigabytes, or 2^31 -1 bytes.

LONG RAW Raw binary data of variable length up to 2 gigabytes. 

NCHAR (SIZE) Fixed-length character data of length size characters or bytes, 
depending on the choice of national character set. Maximum size is 
determined by the number of bytes required to store each character, 
with an upper limit of 2000 bytes. Default and minimum size is 1 
character or 1 byte, depending on the character set.

NCLOB A character large object containing multibyte characters. Both 
fixed-width and variable-width character sets are supported, both 
using the NCHAR database character set. Maximum size is 4 
gigabytes. Stores national character set data. 

NUMBER Number having precision p and scale s. The precision p can range 
from 1 to 38. The scale s can range from -84 to 127.

NVARCHAR2 (SIZE) Variable-length character string having maximum length size 
characters or bytes, depending on the choice of national character 
set. Maximum size is determined by the number of bytes required to 
store each character, with an upper limit of 4000 bytes. You must 
specify size for NVARCHAR2. 

RAW (SIZE) Raw binary data of length size bytes. Maximum size is 2000 bytes. 
You must specify size for a RAW value. 



Data Types

2-8 Oracle SQL Developer Supplementary Information for MySQL Migrations

For more information about Oracle data types, see Oracle Database SQL Language 
Reference.

2.3.2 Default Data Type Mappings
Table 2–4 shows the default settings used by SQL Developer to convert data types 
from MySQL to Oracle. SQL Developer enables you to change the default setting for 
certain data types by specifying an alternative type. For information about changing 
the default data type mappings, see the SQL Developer online help.

VARCHAR (SIZE) The VARCHAR data type is currently synonymous with the 
VARCHAR2 data type. Oracle recommends that you use 
VARCHAR2 rather than VARCHAR. In the future, VARCHAR 
might be defined as a separate data type used for variable-length 
character strings compared with different comparison semantics. 
The maximum size is 4000 and the minimum of 1 is the default.

BINARY_DOUBLE A 64-bit, double-precision floating-point number data type.

BINARY_FLOAT A 32-bit, single-precision floating-point number data type.

Table 2–4 Default Data Type Mappings Used by Oracle SQL Developer

 MySQL Data Type Oracle Data Type

BIGINT NUMBER(19, 0)

BIT RAW

BLOB BLOB, RAW

CHAR CHAR

DATE DATE

DATETIME DATE

DECIMAL FLOAT (24)

DOUBLE FLOAT (24)

DOUBLE PRECISION FLOAT (24)

ENUM VARCHAR2

FLOAT FLOAT

INT NUMBER(10, 0)

INTEGER NUMBER(10, 0)

LONGBLOB BLOB, RAW

LONGTEXT CLOB, RAW

MEDIUMBLOB BLOB, RAW

MEDIUMINT NUMBER(7, 0)

MEDIUMTEXT CLOB, RAW

NUMERIC NUMBER

REAL FLOAT (24)

SET VARCHAR2

Table 2–3 (Cont.) Supported Oracle Data Types

Data Type Description



Data Types

Oracle and MySQL Compared 2-9

2.3.3 Comparing Data Types
This section lists the difference between MySQL and Oracle data types. For some 
MySQL data types there is more than one alternative Oracle data type. The tables 
include information about the following:

■ Numeric Types

■ Date and Time Types

■ String Types

2.3.3.1 Numeric Types
When mapping MySQL data types to numeric data types in Oracle, the following 
conditions apply:

■ If there is no precision or scale defined for the destination Oracle data type, 
precision and scale are taken from the MySQL source data type. 

■ If there is a precision or scale defined for the destination data type, these values 
are compared to the equivalent values of the source data type and the maximum 
value is selected. 

The following table compares the numeric types of MySQL to Oracle:

SMALLINT NUMBER(5, 0)

TEXT VARCHAR2, CLOB

TIME DATE

TIMESTAMP DATE

TINYBLOB RAW

TINYINT NUMBER(3, 0)

TINYTEXT VARCHAR2

VARCHAR VARCHAR2, CLOB

YEAR NUMBER

Note: The ENUM and SET data types have no direct mapping in 
Oracle. SQL Developer maps ENUM columns in MySQL to 
VARCHAR2 columns in Oracle. It then adds a constraint and a 
trigger to those columns to ensure that only values that were 
allowed by the ENUM data type are allowed in the column it was 
mapped to in Oracle. 

MySQL Size Oracle

BIGINT 8 Bytes NUMBER (19,0)

BIT approximately (M+7)/8 Bytes RAW

DECIMAL(M,D) M+2 bytes if D > 0, M+1 bytes 
if D = 0 (D+2, if M < D)

FLOAT(24), BINARY_FLOAT

Table 2–4 (Cont.) Default Data Type Mappings Used by Oracle SQL Developer

 MySQL Data Type Oracle Data Type



Data Types

2-10 Oracle SQL Developer Supplementary Information for MySQL Migrations

2.3.3.2 Date and Time Types
The following table compares the date and time types of MySQL to Oracle:

2.3.3.3 String Types
When mapping MySQL data types to character data types in Oracle, the following 
conditions apply:

■ If there is no length defined for the destination data type, the length is taken from 
the source data type. 

■ If there is a length defined for the destination data type, the maximum value of the 
two lengths is taken.

The following table compares the string types of MySQL to Oracle:

DOUBLE 8 Bytes FLOAT(24), BINARY_FLOAT, 
BINARY_DOUBLE

DOUBLE PRECION 8 Bytes FLOAT(24), BINARY_DOUBLE

FLOAT(25<=X <=53) 8 Bytes FLOAT(24), BINARY_FLOAT

FLOAT(X<=24) 4 Bytes FLOAT, BINARY_FLOAT

INT 4 Bytes NUMBER (10,0)

INTEGER 4 Bytes NUMBER (10,0)

MEDIUMINT 3 Bytes NUMBER (7,0)

NUMERIC M+2 bytes if D > 0, M+1 bytes 
if D = 0 (D+2, if M < D)

NUMBER 

REAL 8 Bytes FLOAT(24), BINARY_FLOAT

SMALLINT 2 Bytes NUMBER(5,0)

TINYINT 1 Byte NUMBER(3,0)

MySQL Size Oracle

DATE 3 Bytes DATE

DATETIME 8 Bytes DATE

TIMESTAMP 4 Bytes DATE 

TIME 3 Bytes DATE

YEAR 1 Byte NUMBER 

Note: Reference to M indicates the maximum display size. The 
maximum legal display size is 255. A reference to L applies to a 
floating point types and indicates the number of digits following 
the decimal point.

MySQL Size Oracle

BLOB L + 2 Bytes whereas L<2^16 RAW, BLOB

CHAR(m) M Bytes, 0<=M<=255 CHAR

MySQL Size Oracle



Data Storage Concepts

Oracle and MySQL Compared 2-11

2.4 Data Storage Concepts
This section provide a description of the conceptual differences and similarities in data 
storage for MySQL and Oracle databases.

Data storage is an aspect of MySQL that sets it apart for nearly every database, 
including Oracle. In MySQL, databases correspond to directories within the data 
directory of the server. Tables within a database correspond to one or more files 
within the database directory, depending on the storage engine used for the tables.

A database can contain a mix of tables of different storage engines. A storage engine is 
responsible for the storage and retrieval of the data for a table.

MySQL offers a variety of storage engines (formerly called table types) to meet the 
different requirements of the user’s environment. Table 2–5 shows the storage engines 
supported by MySQL.

ENUM (VALUE1, VALUE2, ...) 1 or 2 Bytes depending on the 
number of enum. values (65535 
values max)

LONGBLOB L + 4 Bytes whereas L < 2 ^ 32 RAW, BLOB

LONGTEXT L + 4 Bytes whereas L < 2 ^ 32 RAW, CLOB

MEDIUMBLOB L + 3 Bytes whereas L < 2^ 24 RAW, BLOB

MEDIUMTEXT L + 3 Bytes whereas L < 2^ 24 RAW, CLOB

SET (VALUE1, VALUE2, ...) 1, 2, 3, 4 or 8 Bytes depending on 
the number of set members (64 
members maximum)

TEXT L + 2 Bytes whereas L<2^16 VARCHAR2, CLOB

TINYBLOB L + 1 Bytes whereas L<2 ^8 RAW, BLOB

TINYTEXT L + 1 Bytes whereas L<2 ^8 VARCHAR2

VARCHAR(m) L+1 Bytes whereas L<=M 
and0<=M<=255 before MySQL 
5.0.3 (0 <= M <= 65535 in MySQL 
5.0.3 and later; effective maximum 
length is 65,532 bytes)

VARCHAR2, CLOB

Table 2–5 Storage Engines Supported by MySQL

Storage Engine Description

MyISAM The default non-transactional storage engine that provides full-text 
indexing and is highly portable

MERGE A non-transactional storage engine that allows a collection of 
MyISAM tables with identical column and index information to be 
used as one

MEMORY (HEAP) A non-transactional storage engine that stores data in memory

BDB (Berkeley DB) The first transactional-safe storage engine

InnoDB A transactional-safe storage engine designed for maximum 
performance when processing large volume of data and that provides 
row-level locking

FEDERATED A storage engine that accesses data in tables of remote databases 
rather than in local tables

MySQL Size Oracle



Data Storage Concepts

2-12 Oracle SQL Developer Supplementary Information for MySQL Migrations

Each storage engine has its benefits and drawbacks. Some of features that differentiate 
the storage engines are transaction, locking, concurrency and portability. The 
following table summarizes the features for four of the commonly used storage 
engines.

An Oracle database consists of one or more tablespaces. Tablespaces provide logical 
storage space that link a database to the physical disks that hold the data. A tablespace 
is created from one or more data files. Data files are files in the file system or an area of 
disk space specified by a raw device. A tablespace can be enlarged by adding more 
data files. 

An Oracle database consists of a least a SYSTEM tablespace, where the Oracle tables 
are stored. It can also consist of user defined tablespaces. A tablespace is the logical 
storage location for database objects. For example, you can specify where a particular 
table or index gets created in the tablespace. 

ARCHIVE A storage engine that can store large amount of data without indexes 
in very small footprint

CSV A storage engine that stores data in text file using 
comma-separated-values format

BLACKHOLE A storage engine that acts as a "black hole" that accepts data but 
throws it away and does not store it

EXAMPLE A "stub" engine that does nothing. Its purpose is to serve as an 
example that illustrates how to begin writing new engines.

ISAM The original MySQL storage engine that has been deprecated in favor 
of the MyISAM storage engine as of version 5.0

Table 2–6 Feature Comparison for Common Storage Engines

Feature MyISAM Heap BDB InnoDB

Transactional No No Yes Yes

Lock granularity Table Table Page Row

Storage A data file (.MYD) and an 
index file (.MYI) for each table

In-memory A single data and index 
file (.db) for each table

A set of data files 
for all the tables

Portable Yes N/A No Yes

Table 2–5 (Cont.) Storage Engines Supported by MySQL

Storage Engine Description



3

Triggers and Stored Procedures 3-1

3 Triggers and Stored Procedures

This chapter compares MySQL and Oracle triggers and stored procedures. (The 
information in this chapter applies only to MySQL release 5, not to earlier releases.) 
For more information about Oracle triggers and stored procedures, see the PL/SQL 
User's Guide and Reference. This chapter includes the following sections:

■ Triggers

■ Stored Procedures

3.1 Triggers
Triggers are named database objects that are implicitly fired when a triggering event 
occurs. The trigger action can be run before or after the triggering event. Triggers are 
similar to stored procedures but differ in the way that they are invoked.

Support for triggers in MySQL is only included beginning with release 5.0.2. A trigger 
can only be associated with a table and defined to fire when an INSERT, DELETE or 
UPDATE statement is performed on the table. MySQL does not permit two triggers 
with the same trigger timing (BEFORE or AFTER) and trigger event or statement 
(INSERT, DELETE, or UPDATE) to be defined on a table. For example, you cannot 
define two BEFORE INSERT or two AFTER UPDATE triggers for a table. All triggers 
defined on MySQL are row triggers, which means that the action defined for the 
triggers is executed for each row affected by the triggering statement. 

Error handling during trigger execution for transactional tables ensures that either 
both the triggering statement and trigger action is completed successfully or neither 
the trigger statement nor the trigger action is executed, that is all changes made are 
rollback on failure. For non-transactional tables, all changes made prior to the point of 
error remains in effect.

The following is the syntax to create a trigger in MySQL:

CREATE TRIGGER <trigger name> 
  { BEFORE | AFTER } 
  { INSERT | UPDATE | DELETE } 
  ON <table name>  
  FOR EACH ROW 
  <triggered action>

In Oracle, triggers can be fired when one of the following operations occurs:

■ DML statements (INSERT, DELETE or UPDATE) that modify data on a table or 
view

■ DDL statements



Stored Procedures

3-2 Oracle SQL Developer Supplementary Information for MySQL Migrations

■ User events such as logon and logoff

■ System events such as startup, shutdown, and error messages

Oracle allows multiple triggers with the same trigger timing and trigger event to be 
defined on a table; however, these triggers are not guaranteed to execute in any 
specific order. Triggers can be defined as row triggers or statement triggers. Statement 
triggers are fired once for each triggering statement regardless of the number of rows 
in a table affected by the triggering statement. For example if a DELETE statement 
deletes several rows from a table, a statement trigger is only fired once.

The execution model for Oracle triggers is transactional. All actions performed as a 
result of the triggering statement, including the actions performed by fired triggers, 
must all succeed; otherwise, they are rolled back.

3.2 Stored Procedures
Stored procedures provide a powerful way to code application logic that can be stored 
on the server. MySQL and Oracle both use stored procedures and functions. Stored 
functions are similar to procedures, except that a function returns a value to the 
environment in which it is called. In MySQL, stored procedures and functions are 
collectively called routines.

The following sections compare stored procedures in MySQL and Oracle:

■ Individual SQL Statements

■ Variables in Stored Procedures

■ Error Handling in Stored Procedures

3.2.1 Individual SQL Statements
This section describes considerations related to the following statements or constructs:

■ REPLACE Statement

■ DO Statement

■ Compound DECLARE Statement

■ Compound SET Statement

3.2.1.1 REPLACE Statement
The REPLACE statement in MySQL is a dual-purpose statement. It works like the 
INSERT statement when there is no record in the table that has the same value as the 
new record for a primary key or a unique index, and otherwise it works like the 
UPDATE statement.

Oracle does not have any built-in SQL statements that supports the purposes of the 
MySQL REPLACE statement. To convert this statement to Oracle, an emulated 
function using both the INSERT and UPDATE statements has to be created. An 
attempt is first made to place the data into the table using the INSERT statement; and 
if this fails, the data in the table is then updated using the UPDATE statement.

3.2.1.2 DO Statement
As its name implies, the DO statement in MySQL does something but does not return 
anything; specifically, it executes the comma-delimited list of expressions specified as 
its parameters. The DO statement is converted to a SELECT expr1 [, expr2,…] 
INTO … FROM DUAL statement in Oracle.



Stored Procedures

Triggers and Stored Procedures 3-3

3.2.1.3 Compound DECLARE Statement
MySQL uses the DECLARE statement to declare local variables in stored procedures. 
PL/SQL does not allow multiple declarations; each declaration must be made 
separately. To convert compound DECLARE statements into functionally equivalent 
PL/SQL code, each MySQL multiple declaration statement should be converted into 
logically equivalent separate statements, one for each declaration.

For example, consider the following MySQL simple declaration and multiple 
declaration statements:

/* Simple declaration */
DECLARE a INT;
 
/* Compound declaration */
DECLARE a, b INT DEFAULT 5; 
 
The PL/SQL functionally equivalent statements are:

/* Simple declaration */
a INT;
 
/* Multiple declarations */
a INT := 5;
b INT := 5;
 
In this example, the two original MySQL DECLARE statements are converted into 
three logically equivalent PL/SQL declaration statements, with one PL/SQL 
declaration statement for every declaration used within the MySQL DECLARE 
statements.

3.2.1.4 Compound SET Statement
MySQL uses the SET statement to assign values to variables (user variables or system 
variables). MySQL allows compound statements that assign values to two or more 
variables within the same statement. PL/SQL allows only simple assignments that 
assign a single value to a single variable. To convert compound SET statements into 
functionally equivalent PL/SQL code, split each MySQL multiple assignment 
statement into logically equivalent simple assignment statements.

For example, consider the following MySQL simple assignment and multiple 
assignment statements:

/* Simple statement */
SET a:=1;
 
/* Compound statement*/
SET x:=1, y:=0;
 
The PL/SQL functionally equivalent statements are:

/* Simple statement */
a:=1;
 
/* Multiple statements */
x:=1;
y:=0;
 
In this example, the two original MySQL SET statements are converted into three 
logically equivalent PL/SQL assignment statements, with one PL/SQL assignment 
statement for every declaration used within the MySQL SET statements.



Stored Procedures

3-4 Oracle SQL Developer Supplementary Information for MySQL Migrations

3.2.2 Variables in Stored Procedures
MySQL supports three types of variables in stored procedures: local variables, user 
variables, and system variables.

Local variables are declared within stored procedures and are only valid within the 
BEGIN…END block where they are declared. Local variables must be declared within 
a BEGIN…END block before they can be referenced in other statements in the block, 
including any nested BEGIN…END blocks. If a local variable declared within a nested 
BEGIN…END block has the same name as a local variable declared in its enclosing 
BEGIN…END block, the local variable in the nested block takes precedence wherever 
the local variable is referenced in the nested BEGIN…END block. Local variables can 
have any SQL data type. The following example shows the use of local variables in a 
stored procedure.

CREATE PROCEDURE p1()
BEGIN
   /* declare local variables */
   DECLARE x INT DEFAULT 0;
   DECLARE y, z INT;
 
   /* using the local variables */
   SET x := x + 100;
   SET y := 2;
   SET z := x + y;
 
   BEGIN
      /* local variable in nested block */
      DECLARE z INT;
       
      SET z := 5;
 
      /* local variable z takes precedence over the one of the 
         same name declared in the enclosing block. */ 
      SELECT x, y, z;
   END;
 
   SELECT x, y, z;
END;
 
mysql> call p1();
+-----+---+---+
| x   | y | z |
+-----+---+---+
| 100 | 2 | 5 |
+-----+---+---+
1 row in set (0.00 sec)
 
+-----+---+-----+
| x   | y | z   |
+-----+---+-----+
| 100 | 2 | 102 |
+-----+---+-----+
1 row in set (0.00 sec)
Query OK, 0 rows affected (0.00 sec)

User variables are specific to a user session and cannot be seen or used by other users. 
They are valid only for the duration of a user session and are automatically freed 
when the user session ends. User variables have a session-scope; thus, all references to 
a user variable of the same name within a session refer to the same variable. In MySQL 



Stored Procedures

Triggers and Stored Procedures 3-5

stored procedures, user variables are referenced with an ampersand (@) prefixed to 
the user variable name (for example, @x and @y). The following example shows the 
use of user variables in two stored procedures.

CREATE PROCEDURE p2()
BEGIN
   SET @a = 5; 
      SET @b = 5; 
      SELECT @a, @b;
   END;
 
CREATE PROCEDURE p3()
BEGIN
   SET @a = @a + 10; 
      SET @b = @b - 5; 
      SELECT @a, @b;
   END;
 
mysql> call p2();
+------+------+
| @a   | @b   |
+------+------+
| 5    | 5    |
+------+------+
1 row in set (0.00 sec)
 
Query OK, 0 rows affected (0.00 sec)
 
mysql> call p3();
+------+------+
| @a   | @b   |
+------+------+
| 15   | 0    |
+------+------+
1 row in set (0.00 sec)
 
Query OK, 0 rows affected (0.00 sec)

In the second procedure (p3) in the preceding example, the use of the user variables a 
and b on the right-hand side of the assignment statement assumed that the variables 
have previously been initialized to some value by the first procedure. If the variables 
have not been initialized by the first procedure, they would have null values, and the 
result for the assignment would also be a null value.

System variables can also be referenced in MySQL stored procedures. There are two 
kinds of system variable in MySQL: global system variables and session system 
variables. Global system variables affect the operation of the overall server. Session 
system variables affect the individual user session. System variables that are dynamic 
can also be changed in MySQL stored procedures.

In a SET statement, variables name preceded by GLOBAL or @@global. are global 
variables, and session variables name can optionally be preceded by SESSION, 
@@session., LOCAL or @@local.. System variables can be referenced in SELECT 
statement using the @@[global.|session.|local.]var_name syntax. If 
global., session., or local. is not present, MySQL returns the SESSION variable 
if it exists or the GLOBAL value otherwise. The following example shows some of 
these syntax options.

CREATE PROCEDURE p4()
BEGIN



Stored Procedures

3-6 Oracle SQL Developer Supplementary Information for MySQL Migrations

     /* setting the value of a (dynamic) global variable */
     SET GLOBAL sort_buffer_size := 10000;
 
     /* retrieving the value of a global variable */
     SELECT @@global.sort_buffer_size;
 
     /* setting the value of a (dynamic) session variable */
     SET max_join_size := DEFAULT;
 
     /* retrieving the value of a session variable, shown using 
        different syntax */
     SELECT @@session.max_join_size;
     SELECT @@local.max_join_size;
     SELECT @@max_join_size; 
END;

Oracle PL/SQL also allows variables to be declared and used in stored procedures. As 
in MySQL, variables in PL/SQL must be declared in the declarative part of a PL/SQL 
block before they are referenced in any other statements in the block.

Local variables in PL/SQL have same scope as local variables in MySQL stored 
procedures. They are valid within the PL/SQL block where they are declared, 
including nested PL/SQL blocks. A variable of the same name in a nested PL/SQL 
block takes precedence over the variable in the enclosing PL/SQL block.

As with local variables in MySQL, variables in PL/SQL can have any SQL data type, 
such as NUMBER or VARCHAR2. In addition, variables in PL/SQL can also have 
PL/SQL data types, such as BOOLEAN or PLS_INTEGER, or be declared to hold table 
columns or table rows using the special qualifiers %TYPE and %ROWTYPE.

The following example shows some variable declarations in a PL/SQL block.

DECLARE 
  /* variables of SQL data-type */
  wages NUMBER;
  hours_worked NUMBER := 40;
  hourly_salary NUMBER := 22.50;
  bonus NUMBER := 150;
  country VARCHAR2(128);
  counter NUMBER := 0;
 
  /* variables of PL/SQL data-types */
  done BOOLEAN;
  valid_id BOOLEAN;
 
  /* variables declared to hold table rows */
  emp_rec1 employees%ROWTYPE;
  emp_rec2 employees%ROWTYPE;
BEGIN
  wages := (hours_worked * hourly_salary) + bonus;
  country := 'France';
  country := UPPER('Canada');
  done := (counter > 100);
  valid_id := TRUE;
  emp_rec1.first_name := 'Antonio';
  emp_rec1.last_name := 'Ortiz';
  emp_rec1 := emp_rec2;
END;

Oracle PL/SQL also allows constants to be declared in stored procedures. Like 
variables, constants must be declared in the declarative part of a PL/SQL block before 



Stored Procedures

Triggers and Stored Procedures 3-7

they can be referenced in other statements in the PL/SQL block, including nested 
PL/SQL blocks. A constant is declared with the CONSTANT keyword. A constant must 
be initialized in its declaration, and no further assignments to the constant are 
allowed. The following example declares a constant in PL/SQL.

credit_limit CONSTANT NUMBER := 5000.00;

User variables in MySQL stored procedures can be emulated in Oracle by defining the 
variables in a package. The package specification emulates the per-session MySQL 
user variables.Variables defined in a package are available to the users of the package. 
For an example of a MySQL stored procedure and the converted equivalent in Oracle, 
consider the following MySQL stored procedure:

CREATE PROCEDURE p2()
BEGIN
  SET @a = 5; 
  SET @b = 5; 
  SELECT @a, @b;
END;

For this example, the Oracle equivalent statements are:

CREATE OR REPLACE PACKAGE root.globalPkg AS
   a NUMBER;
   b NUMBER;
END globalPkg;
 
CREATE OR REPLACE PROCEDURE root.p2 AS
BEGIN
   globalPkg.a := 5;
   globalPkg.b := 5;
 
   DBMS_OUTPUT.PUT_LINE(globalPkg.a || ‘,’ || globalPkg.b);
END p2;
 
CREATE OR REPLACE PROCEDURE root.p3 AS
BEGIN
   globalPkg.a := globalPkg.a + 10;
   globalPkg.b := globalPkg.b - 5;
 
   DBMS_OUTPUT.PUT_LINE(globalPkg.a || ‘,’ || globalPkg.b);
END p3;

3.2.3 Error Handling in Stored Procedures
Both Oracle PL/SQL and MySQL implement an error handling mechanism for their 
stored procedures. Each SQL statement in the stored procedure is checked for errors 
before the next statement is processed. If an error occurs, control immediately is 
passed to an error handler. For example, if a SELECT statement does not find any 
rows in the database, an error is raised, and the code to deal with this error is 
executed.

In MySQL stored procedures, handlers can be defined to deal with errors or warnings 
that occurs from executing a SQL statement within a stored procedure. MySQL allows 
two types of handlers: CONTINUE handlers and EXIT handlers. The two types of 
handlers differ from their next point of execution in the stored procedure after the 
handler is run. For a CONTINUE handler, execution continue at the next statement 
after the statement that raised the error. For an EXIT handler, execution of the current 
compound statement, enclosed by a pair of BEGIN and END statements, is terminated 
and execution continues at the next statement (if any) after the compound statement.



Stored Procedures

3-8 Oracle SQL Developer Supplementary Information for MySQL Migrations

Handlers are defined to deal with one or more conditions. A condition may be a 
SQLSTATE value, a MySQL error code, or a predefined condition. There are three 
predefined conditions: SQLWARNING (warning or note), NOT FOUND (no more 
rows) and SQLEXCEPTION (error). A condition may be defined separately with a 
name and subsequently referenced in the handler statement. All the handler 
definitions are made at the start of a compound statement block.

In Oracle PL/SQL stored procedures, an error condition is called an exception. 
Exceptions may be internally defined (by the runtime system) or user-defined. Some 
internal exceptions have predefined name, such as ZERO_DIVIDE or NO_DATA_
FOUND. Internal exceptions are implicitly (automatically) raised by the runtime 
system. User-defined exceptions must be given names and must be raised explicitly by 
RAISE statements in the stored procedures. Exception handlers handle exceptions that 
are raised.

Exception handlers can be declared for a PL/SQL block. Such exception handlers are 
enclosed between BEGIN and END statements, and they handle exceptions that might 
be raised by statements in the PL/SQL block, including sub-blocks. A PL/SQL block is 
similar to a MySQL compound statement block. Exceptions can be declared only in the 
declarative part of a PL/SQL block, and they are local to that block and global to all of 
its sub-blocks. Thus, the enclosing block cannot handle exceptions raised in a 
sub-block if they are exceptions local to the sub-block. Exceptions raised in a sub-block 
are not propagated to the enclosing block if exception handlers defined for sub-block 
handle them and if are not raised again in the exception handlers. After an exception 
handler runs, the current block stops executing and execution resumes at the next 
statement in the enclosing block.

For an example of using the error handling mechanism in MySQL and Oracle stored 
procedures, consider the following MySQL stored procedure:

CREATE PROCEDURE adjust_emp_salary () 
BEGIN 
  DECLARE job_id INT;
  DECLARE employee_id INT DEFAULT 115;
  DECLARE sal_raise DECIMAL(3,2);
  DECLARE EXIT HANDLER FOR 1339; 
 
  SELECT job_id INTO jobid FROM employees WHERE employee_id = empid;
  CASE
    WHEN jobid = 'PU_CLERK' THEN 
      SET sal_raise := .09;
    WHEN jobid = 'SH_CLERK' THEN 
      SET sal_raise := .08;
    WHEN jobid = 'ST_CLERK' THEN 
      SET sal_raise := .07;
  END CASE;
END;

The following is the Oracle PL/SQL equivalent.

CREATE OR REPLACE PROCEDURE adjust_emp_salary () 
AS
  jobid employees.job_id%TYPE;
  empid employees.employee_id%TYPE := 115;
  sal_raise NUMBER(3,2);
BEGIN
  SELECT job_id INTO jobid from employees 
    WHERE employee_id = empid;
 
  CASE



Stored Procedures

Triggers and Stored Procedures 3-9

    WHEN jobid = 'PU_CLERK' THEN 
      sal_raise := .09;
    WHEN jobid = 'SH_CLERK' THEN 
      sal_raise := .08;
    WHEN jobid = 'ST_CLERK' THEN 
      sal_raise := .07;
  END CASE;
  EXCEPTION
    WHEN CASE_NOT_FOUND THEN
    DBMS_OUTPUT.PUT_LINE('Employee salary not adjusted.');
END;



Stored Procedures

3-10 Oracle SQL Developer Supplementary Information for MySQL Migrations



4

Troubleshooting 4-1

4 Troubleshooting

This chapter provides information about optimizing the command line options and 
avoiding issues connecting SQL Developer to the MySQL database server. It includes 
information about:

■ Defining the User Account

■ Dumping MySQL Data

■ Optimizing Command Line Options

4.1 Defining the User Account
When you migrate to Oracle, SQL Developer attempts to connect to the MySQL 
database as MySQL user associated with the current database connection. (SQL 
Developer does not use the MySQL root user.) SQL Developer can capture only those 
MySQL database objects that the specified MySQL user has privileges to access.

Therefore, when you create the database connection that you intend to use for MySQL 
migrations, be sure to specify a MySQL user that has sufficient privileges to access all 
objects and data that you plan to migrate to Oracle. 

4.2 Dumping MySQL Data
If you are having difficulty migrating from MySQL to Oracle, you can check the SQL 
Developer discussion forum on the Oracle Technology Network.

If you have a support contract, the SQL Developer support team may ask you to 
provide a dump of the MySQL database. This helps the team track the problem and 
provide a swift solution. By using the mysqldump method to create a copy of the 
MySQL database you generate text files that are portable to other systems, even those 
with different hardware architecture. The SQL Developer support team can regenerate 
the output into another database.

The following table provides an explanation of the code used to dump the MySQL 
data and to regenerate the database from the mysqldump output text file:

Command Description

mysqldump Allows you to extract the schema and data in a MySQL database 
to a file.

mysql Loads MySQL so you can carry out the command.

-u user name MySQL user name.

-p password Password for the specified user.



Optimizing Command Line Options

4-2 Oracle SQL Developer Supplementary Information for MySQL Migrations

To dump the MySQL data, use the following command:

% mysqldump -u user name -ppassword --opt database_name > file_name.sql

To regenerate the database from the mysqldump output text file into a database, use 
the following command:

% mysql -u user name -ppassword database_name < file_name.sql

4.3 Optimizing Command Line Options
You automatically switch on options within the mysqldump command line by using 
--opt. The following table lists the commands encompassed by the -opt command:

--opt Optimizes table dumping speed and writes a dump file for 
reloading speed. For a list of definitions of the options enabled 
by --opt, see "Optimizing Command Line Options".

database_name Name of the database containing the information you want to 
dump to an output text file.

> Symbol used for re-directing the input in UNIX and NT.

file_name.sql File name containing the MySQL database information.

Command Description

--add-drop-table Adds a DROP TABLE IF EXISTS statement before each 
CREATE TABLE statement.

--all Includes all of the MySQL specific create options.

--extended-insert Writes multiple row INSERT statements.

--quick Dumps tables directly to the standard output without 
buffering the query. If you suspend mysqldump while using 
this option, you may interfere with other clients because it 
could cause the server to stop responding.

--lock-tables Locks all tables as read only.

Command Description



Index-1

Index

C
changing default data types, 2-8
command line options, optimizing, 4-2
compound DECLARE statements, 3-3
compound SET statements, 3-3

D
data storage concepts, 2-11
data types, 2-7

comparison, 2-9
default, 2-8
supported, 2-7

DECLARE statements
compound, 3-3

default data types, 2-8
defining, user account, 4-1
DO statements, 3-2
dumping MySQL data, 4-1

E
error handling

in stored procedures, 3-7
exception handling, 3-7

M
modifying default data types, 2-8
MySQL

dumping data, 4-1

O
overview, 3-2

triggers, 3-1

P
procedures

error handling in stored procedures, 3-7
variables in stored procedures, 3-4

R
REPLACE statements, 3-2

S
schema migration, 2-2
SET statements

compound, 3-3
stored procedures, 3-2

error handling in, 3-7
overview, 3-2
variables in, 3-4

support options, 4-1
supported data types, 2-7

T
table design considerations, 2-4
Triggers, 3-1
triggers

overview, 3-1
troubleshooting, connection issues, 4-1

U
user account, defining, 4-1

V
variables

in stored procedures, 3-4



Index-2


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	Third-Party License Information

	1 Introduction
	2 Oracle and MySQL Compared
	2.1 Database Security
	2.1.1 Database Authentication
	2.1.2 Privileges

	2.2 Schema Migration
	2.2.1 Schema Object Similarities
	2.2.2 Schema Object Names
	2.2.3 Table Design Considerations
	2.2.3.1 Character Data Types
	2.2.3.2 Column Default Value

	2.2.4 Migrating Multiple Databases
	2.2.5 Schema Migration Considerations for MySQL
	2.2.5.1 Databases
	2.2.5.2 Mapping MySQL Global and Database-Level Privileges to Oracle System Privileges
	2.2.5.3 Temporary Tables
	2.2.5.4 Owner of Schema Objects


	2.3 Data Types
	2.3.1 Supported Oracle Data Types
	2.3.2 Default Data Type Mappings
	2.3.3 Comparing Data Types
	2.3.3.1 Numeric Types
	2.3.3.2 Date and Time Types
	2.3.3.3 String Types


	2.4 Data Storage Concepts

	3 Triggers and Stored Procedures
	3.1 Triggers
	3.2 Stored Procedures
	3.2.1 Individual SQL Statements
	3.2.1.1 REPLACE Statement
	3.2.1.2 DO Statement
	3.2.1.3 Compound DECLARE Statement
	3.2.1.4 Compound SET Statement

	3.2.2 Variables in Stored Procedures
	3.2.3 Error Handling in Stored Procedures


	4 Troubleshooting
	4.1 Defining the User Account
	4.2 Dumping MySQL Data
	4.3 Optimizing Command Line Options

	Index
	C
	D
	E
	M
	O
	P
	R
	S
	T
	U
	V


