Nerve Cells & Impulses

Class 05: The Neural Impulse

1

Some Background Metaphors

- If your home cellar is built in very wet ground, what do you need to keep the cellar from flooding?
- What happens when you flush a toilet? How frequently can you flush?

Some basics about electricity

What's in an atom?

Atoms consist of a nucleus with protons & neutrons and an outside shell of one or more electron(s)

An electron is a subatomic particle which has a single negative charge

A proton is a subatomic particle which has a single positive charge

What's an electrical current?

An electrical current is the flow of negatively-charged electrons toward a region that is less negatively charged through some type of conducting material (e.g., a wire or, even, liquid)

3

What's a battery?

A battery is a device with one or more electrochemical cells in which there is an uneven distribution of electrical charges because of chemical reactions within the cells

As we will see, a neuron is a kind of organic battery

lons

5

2 Types of "Pressure" among lons

- Like electrons, ions can flow or move in liquids
- lons of the same charge repel each other (called an electrostatic or electrical gradient)
- lons tend to diffuse to equalize their concentration in a liquid, i.e., high concentration spreads out to areas of low concentration (concentration gradient)

Measuring Voltage across Neural Membrane

How can we measure the voltage on either side of the neuron's membrane?

Scientists use very tiny microelectrodes which are connected to a signal amplifier and, then, a computer

7

The Neuron at Rest

- The areas inside & outside the membrane are liquid but with different concentrations of ions
- More Na+ outside & more K+ inside
- Membrane is selectively permeable
- Neurons "leak" K+
- K+ both enters and exits membrane
- Sodium-Potassium (Na-K)
 Pump (a protein complex)
 maintains the resting state
- Other channels (gates) in the membrane remain closed

9

The Neuron at Rest 2

- Because of the unequal concentrations of ions, there is a strong electrical gradient AND concentration gradient upon the Na + ions to move inside the membrane.
- The inside is -70 mV relative to the outside. This is its "resting potential"
- Hence, a neuron at rest is like a battery with a charge of -70 mV

--

Action Potential

- The axon is lined with Na+ and K+ channels which open and close depending upon the voltage inside the neuron. Thus, they are voltageactivated.
- The action potential is the movement of ions inside and outside the neuron in a patterned sequence

- 1 At -40 mV, Na+ channels open & Na+ ions flood in. After a short delay, K+ channels open as well & K+ ions flood outside
- 2 At +50 mV, Na+ channels close but K+ channels remain open & K+ ions continue to pour inside
- When inside voltage decreases to -90mV, K+ channels close.
- (4) Na-K ump restores potential to -70mV in 1 msec.